
Refinement of the Visual Code Checking Language for an

Automated Checking of Building Information Models Regarding

Applicable Regulations

Cornelius Preidel and André Borrmann

Chair of Computational Modeling and Simulation; TUM Department of Civil, Geo and

Environmental Engineering, Technical University of Munich, Arcisstraße 21, 80333 Munich;

Email: cornelius.preidel@tum.de

ABSTRACT

With Building Information Modeling becoming mature, this technology provides several new

possibilities for improving the checking processes of the design planning regarding the applicable

codes in the construction industry. Code compliance checks are essential since they standardize

the functions a building must fulfill finally. Currently, these controls are cumbersome and error-

prone and performed to a large extent manual by the planning consultants as well as authority

officers. To enable an automation, the contents of the applicable guidelines have to be translated

into a digital format, which can be read, interpreted and applied by machines. Various approaches

focused on a textual or hard-coded translation of the guidelines. To increase the involvement of

non-programming users, we introduced the Visual Code Checking Language, which uses a visual

notation to represent the content of directives machine- as well as human-readable. In the presented

paper, the authors present a refinement of the VCCL to increase the coverage rate of the translation

capabilities.

INTRODUCTION

Nowadays, the compliance of building designs with applicable requirements and regulations is

checked largely manually. As a rule, a large number of international, national and regulations must

be taken into account by the planning consultants as well as building authority officers to be sure

that the building fulfills all functions properly (Boken and Callaghan 2009; Eastman et al. 2009).

Therefore, the checking and review cycles can take a long time and thus contribute to the increase

in the cost of the entire process. Today this process has a very low degree of automation, and so

the process is laborious, cognitively challenging and error-prone for the users. To overcome this

issue, the authors introduced the Visual Code Checking Language (VCCL) to provide users an

instrument which they can use to translate the contents of codes visually and thus formalize them.

This digital neutral representation can be used to partially or even fully automate the checking

process, which is also referred to as Automated Code Compliance Checking. The main advantage

of this approach is that the readability of the encoded checking process is preserved for the users

at the same time. Non-transparent black-box procedures, such as hard-coded or very complex

approaches, which require programming knowledge, cannot be translated or adapted by the user.

Since the user can not verify or test the results, his acceptance is dramatically reduced (Preidel and

Borrmann 2015).

The authors have formulated basic requirements, which must be fulfilled by an approach for an

Automated Code Compliance Checking: The method should be (1) capable of the expression of

geometric as well as non-geometric constraints and requirements, (2) accessible for domain experts

with limited software development knowledge, and (3) independent from the employment of a

particular code checking engine (Preidel and Borrmann 2016).

STATE OF THE ART

In recent years, the number of efforts for an Automated Code Compliance Checking has increased.

A basic overview of state of the art in this field including the most important open research

questions is given by Eastman et al. (2009). The authors report a significant need for studies in this

application area and focus especially on the separation of the representation of rules as well as the

techniques required for processing and checking them.

Several approaches are focusing on rules as procedural code embedded within a code checking

system (Ding et al. 2006; Eastman 2009; Eastman et al. 2009; Solihin 2004). In this way, vast areas

of the codes can be translated and formalized directly, but the code is not accessible for third-party

developers or domain experts anymore so that its correctness is thus not verifiable. These

approaches are also referred to as “black box” implementations, whose acceptance is usually not

very high among the domain experts (Nisbet et al. 2008). An example of such a black-box

implementation is the system CORENET e-PlanCheck, which is a platform hosted by the

Singaporean government for checking the compliance of digital building models with design

requirements in the areas of building control, barrier-free access and fire safety (Solihin 2004).

The methods of this system are summarized in the FORNAX library as black-box implementations

and have been developed and maintained by a private company.

Another major commercial solution is the Solibri Model Checker (SMC), which is a Java-

Application for BIM-based model quality and code checking. The SMC was published by the

Finnish company Solibri in 2000. All processes within this application are based on information

of IFC-Models, which are mapped onto an internal data model. The core of the SMC’s checking

routines is the Ruleset Manager, which provides a basic library of 42 single rule templates. Such a

rule template represents a hard-coded standard checking procedure, which can be adjusted by a

limited number of given parameters. These rule templates can be composed or adjusted by the user

regarding his individual requirements. Also, these rules cannot be represented using a human-

readable external format but have to be implemented using a native data format.

Another genre of research approaches is focusing on the development of a Natural Language

Processing (NLP) system for an automated extraction of the rule knowledge from flow texts of

guidelines such as in (Zhang and El-Gohary 2016a), (Zhang and El-Gohary 2016b) or (Uhm et al.

2015). However, these approaches are currently limited, since the representation of complex

knowledge, such as geometric constraints or operators, is not possible yet. Furthermore, these

systems are designed for full automation and can only be checked, managed and adapted by

specialist experts with programming knowledge.

Furthermore, various approaches are based on the development of a domain-specific textual query

language. As an example, Lee (2011) developed the Building Environment and Analysis Language

(BERA). In (Lee et al. 2015) this language is specially applied for the encoding of more complex

rules regarding evaluating a building’s circulation and spatial programs. BERA provides a set of

spatial operators for the definition of standards in the context of these application areas. However,

the developed language lacks the desired generality to cover sufficiently any content, but as a first

essential language-based approach it forms a highly significant foundation and a point of

departure.

A promising different approach by (Solihin and Eastman 2016) introduces a visual translation

method based on conceptual graphs representing design rules. The method is characterized by the

fact that it tries to find a balance between readability for the user and a clear and stringent

interpretation and translation of the rules.

In summary, it can be stated that significant research has been conducted regarding the Automated

Code Compliance Checking so far. However, several approaches introduce methods, which base

on hard-coded methods, which results in a severe lack of transparency and flexibility of the

encoded rule system. Only a few approaches take into account the involvement of the user in the

process, such as an employment of a computer-processable intermediate representation of the

building code.

METHODOLOGY

As described in the previous sections, the challenges of an Automated Code Compliance Checking

have not yet been solved holistically. Therefore, the authors have introduced a novel approach

based on Visual Programming in (Preidel and Borrmann 2015). Following, the methodology will

be explained briefly, followed by the major improvements in the language.

Visual Programming. In recent years, Visual Programming Languages (VPL) have made inroads

into the field of digital construction. Users can employ these languages as a tool to make repetitive

work or the creation of variants and their evaluation a lot easier without the need for detailed

programming knowledge. A visual language is defined as a formal language with visual syntax

and semantics (Schiffer 1998). It describes a system of signs and rules on the syntactic and

semantic level with the help of visual elements, which are more readily understandable for non-

professional programmers. Visual programming languages are often referred to as flow-based

since they represent complex structures as a flow of information (Shu 1988). An essential

distinguishing characteristic of different visual programming languages is the granularity. This

granularity describes how finely the specific functionalities are resolved, i.e. whether functions

within a node are entirely encapsulated or whether each sub-step is available and visible as a

separate node. Encapsulation (low granularity) reduces the number of elements present in the

workspace and contributes to the clarity, handling, and comprehensibility of the overall system. At

the other end of the scale (fine granularity), the resulting canvas is a more detailed representation

of the information process in which the user can access and adapt each step as required.

Visual Code Checking Language (VCCL). The VCCL is a domain-specific programming

language designed for the formulation of checking and verification routines, which are contained

in standards or guidelines. Based on digital building information, the VCCL is intended to perform

compliance checks automated or semi-automated, which increases the efficiency and quality of

the overall process significantly. The scope of an application implies special requirements for the

design of the VCCL, which makes this language different from query languages. As with the query

languages, the VCCL also needs to extract information from the building model, but these must be

prepared dependent on the relevant code, more extensively. Furthermore, rule knowledge has to

be represented, e.g. which requirement must be compulsory, under certain circumstances or not be

fulfilled. For this reason, several operators and methods were introduced for the VCCL, which

distinguishes the visual language from other representatives. A first version of the VCCL was

presented in (Preidel and Borrmann 2015).

Lessons Learned - Refinement of the VCCL. The authors have recognized the necessity that the

language has to be adapted for several reasons: In the prior version of the VCCL, objects were

displayed separately, and therefore graphs became overly complex. Furthermore, the design of the

language was not able to represent complex control structures or nested graphs, which are

necessary for the representation of challenging guidelines. Therefore, the design of the language

was adopted and shall be presented in the following: The VCCL is modular and strong-typed,

among other things. For the description of information processes, the VCCL provides basic

elements: (1) Methods (rectangle nodes) representing well-defined operations, (2) Ports (Input-

and Output Circles for the Methods) representing the incoming and outgoing data type, and (3)

Directed Edges, which connect the methods. The user can compose these elements on a canvas to

a VCCL graph according to their requirements and thus represent the desired checking process.

For the creation of a VCCL graph, the user is provided with a three-part control, which is divided

into an input and output as well as a process environment. To define a distinct starting and ending

point of each VCCL program, the global input and output area have some user-defined ports, which

serve as an initial information source and resulting ending point for the defined routine. When

creating a VCCL program, the user has to define which type of information is provided as the

initial input and which kind of information is produced as the final result of the program. For a

more detailed introduction and discussion of the VCCL, the reader is referred to (Preidel and

Borrmann 2016). A generic example of a VCCL graph is shown in Figure 1.

Granularity and Modularization. The VCCL is intended to make any process step the user might

be interested in visible so that he can have an insight on demand. Therefore, the VCCL follows the

principle of realizing the finest processing granularity possible. To avoid overly broad and complex

VCCL networks, we introduce a nesting approach which makes use of the global input and output

areas. Within the VCCL environment, a method describes an operation, which can also be

displayed as a separate VCCL graph and therefore is shown as a nested control. In textual

programming languages, this concept is implemented with functions and subroutines. A nested

VCCL program processes some defined operation steps which are hidden on the upper level to

reduce the visual complexity of the overall VCCL program. By defining input and output ports for

the nested program, it can be saved as single graph instance and re-used in any given VCCL

program. In this way, a hierarchic VCCL library is built-up. A generic example for the

modularization principle is shown in Figure 2.

Method

Method

Relation

BuildingElement

Integer Integer

Figure 1. Generic VCCL graph example

As a prerequisite, basic methods must be given for user, so that he can compose the hierarchic

structure. These given methods describe basic fundamental operations, whose semantics are

unambiguously well defined. Therefore, these methods are called atomic methods. These include,

among others mathematical operators, geometric operators, relational algebra operators, or access

operators for the extraction of information of building models. These methods represent a certain

“black-box level”, from which we assume that it is acceptable for a given application area, where

deeper control and insight is neither desired nor necessary, and too much effort would be created

for implementing the provided functionality using VCCL instead of a standard programming

language. An example, an acceptable black-box atomic method is the evaluation of geometric

information such as the computation of the shortest distance route for a given floor plan. It may be

assumed that a user is not interested having insight in such processes. However, it is important that

atomic methods be characterized by genericity so that the methods can be used for different

purposes. For sure, various other black box limitations have to be considered for various

applications and varying levels of experience. Another major advantage of the modularization is a

representation of control flows, which allow describing more complex systems. Most of the

existing imperative programming languages provide at least the most rudimentary elements of

control flow such as conditional branching or iterations. Conditional branching is typically realized

in textual programming languages using if statements while iterations are implemented using

loops. The VCCL implements these control structures as derivations of nested methods. In this

way, each VCCL program can be tested for validity separately. For details, the reader is referred

to (Preidel and Borrmann 2016).

Formalization. Encoded VCCL graphs do not necessarily have to be visualized, but can also be

stored in XML-based format. So far, this format has largely been independent and has not been

harmonized with other, standardized formats. Since this feature is essential for the exchange

between different project stakeholders, it is planned to streamline the developments with the

current standardization in this application area. Although there are already standards for the

description of guideline knowledge such as LegalRuleML or LegalDocML, one has not yet agreed

on any of these. However, buildingSMART (2016) recently founded the working group Regulatory

Room, which aims to find an open format that can represent this knowledge. Although it will

presumably take some time until first results will be available, it is planned to align VCCL

Method

Method

Method

Method

Method

Method

Figure 2. Granularity Example

developments with the outcomes of this working group and make the VCCL content independently

accessible.

APPLICATION EXAMPLE

To proof the increased translation capability and coverage rate of the VCCL, it was applied to the

translation of Article 34 Clause 1 of the Korean Building Act (Korea Legislation Research Institute

2008), which is shown in Figure 3.

Figure 3. Content of Article 34 Clause 1 of the Korean Building Act

(Korea Legislation Research Institute, 2008)

The modularization approach allows dividing the quite complex regulation into different parts,

which reduces the complexity of the visual translation later on. In a first VCCL module program,

all exit staircases must be identified for each floor. Therefore, the staircases (rooms, which have

stairs inside) have to be checked, if they can be used as exits (rooms, which have exit doors).

Afterward, each single floor can be verified for a connection with an identified exit staircase. The

encoded VCCL module graph is shown in Figure 4.

In the second step, the computation of the walking distance represents an atomic method how has

been described in the methodology section of this paper. We assume that this computation may be

represented as a given method, which the user most likely has no interest to have an insight. This

approach calculates the maximum walking distance from the floor plan and a respective target

point. In Figure 5 the final composed VCCL translation of the guideline is shown. In this graph,

the presented VCCL method for the identification of the stairways as well as the atomic walking

distance method is used on a higher hierarchical level of the VCCL. At this point, we assume, that

the indication whether the main structure of the building is classified as fireproof or is equipped

“On each floor of a building, direct stairs leading to the shelter floor or the ground other than the shelter floor

shall be installed in the way that the walking distance from each part of the living room to the stairs is not more

than 30 meters: Provided, that in cases of a building of which main structural part is made of a fireproof structure

or non-combustible materials, the walking distance of not more than 50 meters may be established, and in cases

of a factory prescribed by Ordinance of the Ministry of Land, Infrastructure and Transport, which is equipped

with automatic fire extinguishers, such as sprinklers, in an automated production facility, the walking distance

of not more than 75 meters may be established.”

BuilElem

BuilElem

TypeFilter
<Room>

TypeFilter
<Stair>

SpatialOp

IsInside

Filter

General

 isExitDoor

< == >

True

<Door>

RelationOp

Projection

Floor

SpatialOp

IsInside

RelationOp

Selection

SpatialOp

Touch

RelationOp
Selection

Column1

Identification of Exit Staircases

Relation

Figure 4. Identification of exit staircases for a selected floor with the VCCL

with automatic sprinklers is information, which is modeled in the building information model and

therefore is given. This information can be obtained either as a user input or evaluated in a higher

VCCL program from the information of the underlying building model. In the present case, the

affected values are introduced as input variables for the VCCL program. For the translation of the

relevant value for the maximum walking distance, the program uses If elements. The significant

maximum value can be determined using simple mathematical methods.

CONCLUSION AND OUTLOOK

The automated checking of digital building models regarding the applicable building regulations

is a major challenge in the construction industry since it is an essential process step which could

lead to a significant increase in efficiency. With the introduction of the VCCL, the authors intend

to provide a suitable solution that meets the special and individual requirements for this

automation. In the first version of the language, the authors noted that changes had to be made to

increase the reach and cover rate of this approach. Therefore, this paper presents an enhancement

of the VCCL, which describes the modularization of complete or partial VCCL graphs. With the

help of this method, the graphic system can be simplified and thus the visual complexity reduced.

Since it is possible to translate and present more complex requirements and systems in this way, it

can be expected that significantly higher cover rates will be achieved in the future. Further

applicability tests in various application areas are planned as a next step.

Acknowledgements. The authors gratefully acknowledge the support of the Nemetschek Group

as well as ALLPLAN GmbH for the research project presented in this paper.

BuildingElement

Floor

Identification of
Exit Staircases

Double: 30

Double: 50

Boolean:
isFireproof

Evaluation of
maximal

Walking Distance

Logical Exp
Boolean

< <= >

Math

< Max >

If

True

Math

< Max >

If

Double: 75

Boolean:
hasSprinklers

If

Figure 5. Encoded VCCL representation of Article 34 Clause 1 of the Korean Building Act

REFERENCES

Boken, P., and Callaghan, G. (2009). "Confronting the Challenges of Manual Journal Entries."

Protiviti, 1–4.

BuildingSmart. (2016). "Regulatory Room." <http://buildingsmart.org/standards/standards-

organization/rooms/regulatory-room/> (Aug. 25, 2016).

Ding, L., Drogemuller, R., Rosenman, M., and Marchant, D. (2006). "Automating code checking

for building designs - DesignCheck." Cooperative Research Centre (CRC) for Construction

Innovation, 1–16.

Eastman, C. (2009). "Automated Assessment of Early Concept Designs." Archit Design,

10.1002/ad.851, 52–57.

Eastman, C., Lee, J.-m., Jeong, Y.-s., and Lee, J.-K. (2009). "Automatic rule-based checking of

building designs." Automation in Construction, 10.1016/j.autcon.2009.07.002, 1011–1033.

Korea Legislation Research Institute. (2008). Article 34 Clause 1.

Lee, J. K. (2011). Building Environment Rule and Analysis (BERA) Language, Georgia Institute

of Technology.

Lee, J.-K., Eastman, C. M., and Lee, Y. C. (2015). "Implementation of a BIM Domain-specific

Language for the Building Environment Rule and Analysis." J Intell Robot Syst,

10.1007/s10846-014-0117-7, 507–522.

Nisbet, N., Wix, J., and Conover, D. (2008). "The Future of Virtual Construction and Regulation

Checking." Virtual futures for design, construction & procurement, P. S. Brandon, and T.

Kocatürk, eds., Blackwell Pub, Oxford, Malden, MA, 241–250.

Preidel, C., and Borrmann, A. (2015). "Automated Code Compliance Checking Based on a

Visual Language and Building Information Modeling.", International Symposium on

Automation and Robotics in Construction and Mining; ISARC, Red Hook, NY.

Preidel, C., and Borrmann, A. (2016). "Towards code compliance checking on the basis of a

visual programming language." Journal of Information Technology in Construction: Special

Issue CIB W78 2015 Special track on Compliance Checking, 402–421.

Schiffer, S. (1998). Visuelle Programmierung: Grundlagen und Einsatzmöglichkeiten, Addison-

Wesley, Bonn.

Shu, N. C. (1988). Visual programming, Van Nostrand Reinhold, New York.

Solihin, W. (2004). "Lessons learned from experience of code-checking implementation in

Singapore.", BuildingSMART Conference

<https://www.researchgate.net/publication/280599027_Lessons_learned_from_experience_of

_code-checking_implementation_in_Singapore> (Oct. 6, 2016).

Solihin, W., and Eastman, C. (2016). "A knowledge representation approach in BIM rule

requirement analysis using the conceptual graph." Journal of Information Technology in

Construction: Special Issue CIB W78 2015 Special track on Compliance Checking, 370–401.

Uhm, M., Lee, G., Park, Y., Kim, S., Jung, J., and Lee, J.-K. (2015). "Requirements for

computational rule checking of requests for proposals (RFPs) for building designs in South

Korea." Advanced Engineering Informatics, 10.1016/j.aei.2015.05.006, 602–615.

Zhang, J., and El-Gohary, N. M. (2016a). "Integrating semantic NLP and logic reasoning into a

unified system for fully-automated code checking." Automation in Construction,

10.1016/j.autcon.2016.08.027.

Zhang, J., and El-Gohary, N. M. (2016b). "Semantic-Based Logic Representation and Reasoning

for Automated Regulatory Compliance Checking." J. Comput. Civ. Eng.,

10.1061/(ASCE)CP.1943-5487.0000583, 4016037.

