
1 INTRODUCTION 

An accurate localization system is crucial for success-
ful autonomous mobile robot deployment in indoor 
GPS-denied environments. 

The indoor localization problem has been ap-
proached by applying several techniques. While some 
rely on the known position of landmarks, such as 
AprilTags or textual cues, others depend on sensors 
that must be installed strategically on the building, 
such as Beacons or WiFi access points. However, in 
most cases, the exact location of specific landmarks 
is not known in advance. On top of that, having addi-
tional sensors increases the cost of the navigation 
stack. 

A BIM model, available for most of the current ar-
chitecture, can be used as a reference map for LiDAR 
localization.  

Moreover, the additional semantic information of 
the model can be exploited to create advanced auto-
mated robotic tasks, like object inspection (Kim & 
Peavy 2022) or painting (Kim et al. 2021) which sim-
ultaneously depend on an accurate localization sys-
tem. 

Scan-BIM deviations are the central issue of using 
a BIM model or a floorplan as a reference map for 
2D-LiDAR localization. These deviations can be 
caused by furniture or clutter not present in the model, 
as-planned and as-built variations, and dynamic or 
“quasi-static” changes in the environment. To address 
this challenge, we contribute with a system that cre-
ates OGMs from BIM models and allows their auto-
matic transformation in Pose Graph-based maps. 
These maps are leveraged for quick, memory effi-
cient, and accurate localization in indoor GPS-denied 
environments, enabling safer autonomous navigation. 
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ABSTRACT: Several studies rely on the de facto standard Adaptive Monte Carlo Localization (AMCL) method 
to localize a robot in an Occupancy Grid Map (OGM) extracted from a building information model (BIM 
model). However, most of these studies assume that the BIM model precisely represents the real world, which 
is rarely true. Discrepancies between the reference BIM model and the real world (Scan-BIM deviations) are 
not only due to the presence of furniture or clutter but also due to the usual as-planned and as-built deviations 
that exist with any model created in the design phase. These Scan-BIM deviations may affect the accuracy of 
AMCL drastically. This paper proposes an open-source method to generate appropriate Pose Graph-based maps 
from BIM models for robust 2D-LiDAR localization in changing and dynamic environments. First, 2D OGMs 
are automatically generated from complex BIM models. These OGMs only represent structural elements allow-
ing indoor autonomous robot navigation. Then, an efficient technique converts these 2D OGMs into Pose 
Graph-based maps enabling a more accurate robot pose tracking. Finally, we leverage the different map repre-
sentations for accurate, robust localization with a combination of state-of-the-art algorithms. Moreover, we 
provide a quantitative comparison of various state-of-the-art localization algorithms in three simulated scenar-
ios with varying levels of Scan-BIM deviations and dynamic agents. More precisely, we compare two Particle 
Filter (PF) algorithms: AMCL and General Monte Carlo Localization (GMCL); and two Graph-based Locali-
zation (GBL) methods: Google's Cartographer and SLAM Toolbox, solving the global localization and pose 
tracking problems. We found that in a real office environment (under medium level of Scan-BIM deviations) 
the translational RMSE of AMCL increases by a factor of four (from 8.5 cm in the empty environment to 33.7 
cm in the real one). On the contrary, pose Graph-based algorithms demonstrate their superiority in contrast to 
particle filter (PF) algorithms, achieving an RMSE of 7.2 cm, even in the real environment. The numerous 
experiments demonstrate that the proposed method contributes to a robust localization with an as-designed BIM 
model or a sparse OGM in changing and dynamic environments, outperforming the conventional AMCL in 
accuracy and robustness. 



More specifically, the following are the main con-
tributions of this paper: 

• A method to extract OGMs from complex multi-
story BIM models allows robot path planning and 
autonomous navigation in indoor GPS-denied en-
vironments. 

• An efficient open-source method1 to convert 
these 2D OGMs into Pose Graph-based maps for 
accurate 2D-LiDAR localization. 

• An extensive quantitative comparison of various 
state-of-the-art 2D LiDAR localization algo-
rithms in three carefully designed simulated sce-
narios with different levels of Scan-BIM devia-
tions and with and without dynamic agents. 

The remainder of this paper is organized as follows. 
Section 2 introduces the problem formulation of Li-
DAR localization and the main principles behind the 
particle filter-based and graph-based localization 
strategies. Section 3 describes previous work done on 
BIM-based LiDAR localization. Section 4 introduces 
our method to generate OGMs from BIM models, 
pose graph-based maps from OGMs, and the pro-
posed employment of these maps for robust localiza-
tion. Section 5 presents the experimental settings, fol-
lowed by the results and analysis in Section 6. Finally, 
section 7 concludes our work. 

2 THEORETICAL BACKGROUND 

Before presenting current state-of-the-art methods, a 
brief introduction is provided to the theoretical basis 
behind the two main types of localization algorithms 
used in this research. 

2.1 Localization problem 
In this paper, we address the robot pose tracking and 
global localization problems, i.e., with and without 
approximated initial pose, respectively, given a 3D 
BIM model as a prior map which omits considerable 
information about the real environment and assuming 
that the robot employs a 2D-LiDAR sensor. 

In the 2D problem, the pose of the robot at time 𝑡𝑡 
is defined as position and orientation 𝒙𝒙𝑡𝑡 =
[𝑥𝑥,𝑦𝑦,𝜃𝜃]⊤ In the coordinate system of the map. We 
aim to estimate the most likely robot's pose 𝒙𝒙𝑡𝑡∗ given 
the measurements 𝒛𝒛𝑡𝑡 and the map 𝒎𝒎. 

Formally, the goal is to compute: 

𝒙𝒙𝑡𝑡∗ = arg max
𝑥𝑥

𝑝𝑝(𝒙𝒙𝑡𝑡 ∣∣ 𝒛𝒛𝑡𝑡,𝒎𝒎 )                 (1) 
 
 Two widely used methods that aim to calculate 

this estimate are the PF and the GBL algorithms. 

 
1 Available at: https://github.com/MigVega/Ogm2Pgbm 

2.2 Particle Filter algorithms 
PF algorithms, also called MCL methods, are proba-
bilistic approaches that represent the pose estimate 
with a set of normalized weighted particles.  

Each particle 𝑠𝑠𝑡𝑡𝑖𝑖 = 〈𝒙𝒙𝑡𝑡𝒊𝒊 ,𝜔𝜔𝑡𝑡
𝑖𝑖〉 consist of a pose 𝒙𝒙𝑡𝑡𝒊𝒊  and 

a weight 𝜔𝜔𝑡𝑡
𝑖𝑖 . Initially, a set of ℳ particles is sampled 

from a Gaussian distribution around the possible lo-
cations of the robot. 

Subsequently, three steps are repeated iteratively 
in the algorithm: motion update, importance 
weighting, and particle resampling. 

For a more detailed explanation of every step, the 
reader is referred to Thrun et al. (2005). In this paper, 
we implemented AMCL (Pfaff et al. 2006) and 
GMCL (Alshikh Khalil & Hatem 2021) to be tested 
under different levels of Scan-BIM deviations. 

2.3 Graph-based algorithms 

Graph-based, also called optimization-based local-
ization methods, use pose-graph data for pose estima-
tion. These pose-graphs contain the environment's 
landmarks (which can be represented as submaps) as-
sociated with nodes (which are the poses from where 
the landmarks were observed).  

Additionally, the nodes are bound to each other 
with spatial constraints.  

In a sliding window manner, the method not only 
considers the most recent measurement but a set of 
them to compute the current Pose. Under the assump-
tion that the measurements are normally distributed 
and i.i.d., it is possible to represent eq. 1 as a weighted 
least squares problem. This problem is commonly 
solved iteratively using the Levenberg-Marquart al-
gorithm. In this paper, we implement Cartographer 
(Hess et al. 2016) and SLAM Toolbox (Macenski & 
Jambrecic 2021) as GBL algorithms. 

While particle filter algorithms are easier to imple-
ment and can represent non-Gaussian distributions, 
graph-based localization algorithms, besides being 
deterministic, can handle delayed measurements and 
maintain a recent history of poses. A more exhaustive 
qualitative comparison is given by Wilbers et al. 
(2019). 

3 RELATED RESEARCH 

A BIM model with 3D geometric information can be 
used as a prior map to accurately localize robots in 
indoor GPS-denied environments and allow autono-
mous navigation.  

This section will overview state-of-the-art meth-
ods which used prior building information, i.e., BIM 
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models or floor plans, to find the correct robot posi-
tion and orientation. 

Follini et al. (2020) show that the transformation 
matrix between the reference system of the robot and 
the map extracted from the BIM model can be re-
trieved by applying the standard AMCL algorithm. 

The same algorithm was used by Prieto et al. 
(2020), Karimi et al. (2021), Kim et al. (2021), and 
Kim & Peavy (2022) to localize a wheeled robot in an 
OGM generated from the BIM model. 

The main difference between these methods relies 
on how they create the OGM from the BIM model. 
While Follini et al. took the vertices of elements that 
intersect a horizontal plane and used the Open CAS-
CADE viewer to generate an OGM in pgm format 
with the corresponding resolution and map origin in-
formation, Prieto et al. uses the geometry of the 
spaces in the Industry Foundation Classes (IFC) file 
and the location and size of each one of the openings. 

Karimi et al. (2020) developed a Building Infor-
mation Robotic System (BIRS), enabling the genera-
tion and semantic transfer of topological and metric 
maps from a BIM model to Robot Operating System 
(ROS). The tool was further developed in (Karimi et 
al. 2021) with an optimal path planner, integrating 
critical components for construction assessment. Kim 
et al. (2021) implemented a method to convert an IFC 
file into a ROS-compliant Simulation Definition For-
mat (SDF) world file suitable for robot task planning. 
They evaluated their approach for the purpose of in-
door wall painting. 

Later, to incorporate dynamic objects and for the 
aim of door inspection, Kim & Peavy (2022) pro-
posed a technique to convert an IFC model into a Uni-
versal Robot Description Format (URDF) building 
world. Once they have the URDF model, they use the 
PgmMap creator (Yang 2018) to create an OGM out 
of it. 

Hendrikx et al. (2021) proposed an approach that, 
instead of using an OGM, uses a robot-specific world 
model representation extracted from an IFC file for 
2D-LiDAR localization. In their factor graph-based 
localization approach, the system queries semantic 
objects in its surroundings and creates data associa-
tions between them and the laser measurements. 
While they demonstrated that the method could track 
the Pose of the robot, it was not evaluated quantita-
tively. 

Instead of using a BIM model, Boniardi et al. 
(2017) use a CAD-based architectural floor plan for 
2D LiDAR-based localization. In their localization 
system, they implement Generalized ICP (GICP) for 
scan matching together with a pose graph Simultane-
ous Localization and Mapping (SLAM) system. 
Later, in (Boniardi et al. 2019), they proposed an im-
proved pipeline for long-term localization in dynamic 
environments. 

 

Zimmerman et al. (2022) use an OGM obtained 
from a sliced TLS point cloud together with human-
readable localized cues to assist localization. Their 
text detection-based localization technique can detect 
known room numbers and thus can robustly handle 
symmetric environments with structural changes. 

While several approaches have emerged aiming to 
create OGMs from BIM models, none of them deal 
with complex non-convex models with multiple sto-
ries and slanted floors. 

Moreover, most of the proposed techniques are 
based on the strong assumption that the BIM model 
represents the actual current state of the building very 
precisely, ignoring the presence of possible Scan-
BIM deviations due to clutter, furniture, as-planned 
vs. as-built differences, changes due to long-term op-
eration, or the presence of dynamic agents. 

4 METHODOLOGY 

As illustrated in Figure 1, our method can be divided 
into three main steps: Step 1: Creation of an OGM 
from an IFC file employing IfcConvert and OpenCV. 
Step 2: Automatic generation of a Pose Graph-based 
map out of an OGM with image processing, coverage 
path planner, and ray casting. Step 3: Robust locali-
zation using particle filter algorithm and graph-based 
localization system. 

4.1 OGM generation from an IFC 
For creating suitable 2D OGMs for robot localization 
and navigation from complex multi-story IFC mod-
els, the IfcConvert tool of IfcOpenSchell (Krijnen 
2015) and image processing techniques are used. 

IfcConvert allows the creation of a 2D map in SVG 
format with the desired elements in the IFC model 
that cross a plane at the desired height. 

In our case, non-permanent entities such as spaces, 
windows, and doors are excluded from the resulting 
2D OGMs by ignoring the corresponding entity 
names. This exclusion is essential to filter only struc-
tural information about the building, enabling further 
autonomous navigation between the rooms that want 
to be explored.  

Besides having the permanent structures in the 
OGMs, and with the aim of global localization and 
posterior correct pose graph map generation, it is cru-
cial to differentiate between outdoor (unknown) and 
indoor (navigable) spaces in the OGMs. This distinc-
tion can be automated creating a second 2D map with 
all the entities in the IFC file (i.e., with doors and win-
dows). 



The final separation of outdoor (gray color), in-
door (white), and obstacle (black) is done based on 
the contours in the SVG image. OpenCV allows the 
processing of the contours depending on their hierar-
chy, i.e., depending on if they are inside (child con-
tours) or outside another contour (parent contours). 

The resulted file is finally converted to .pgm, 
which, together with its properties (the resolution and 
origin) in a .yaml file, can then be loaded into the ro-
botic system as prior environment information, allow-
ing robot localization, and path planning, and auton-
omous navigation. 

A similar procedure can be followed for multi-
story level buildings. In the case of non-overlapping 
stories, the different OGMs can be merged into a sin-
gle one if the relative position between them is 
known. To maintain this spacial relationship, while 
obtaining the OGMs, reference auxiliary elements 
with a height equal to the maximum building's height 
can be included in its surroundings. With these addi-
tional elements, all the OGMs will have the same di-
mensions allowing its merging. 

Creating 2D OGMs with IfcConvert is relatively 
straightforward when the desired section is horizontal 
(parallel with the XY plane). However, if the model 
has a ramp or a slightly slanted floor, the model must 
be rotated before the occupancy map is generated. Fa-
vorably, IfcConvert also allows the rotation of the 
model in the desired angle given a quaternion calcu-
lated from the vector of rotation. 

4.2 OGM2PGBM: OGM to Pose Graph-based map 
conversion 

The automatic generation of data suitable for GBL 
methods from BIM models implies the simulation of 
sequential laser data in the entire navigable space in 
the model with the corresponding odometry data. For 
this aim, the previously generated 2D OGMs are 
used.  

Applying the skeleton method proposed by Lee et 
al. (1994) enables the interconnection of all the rooms 
in a smooth trajectory. Subsequently, a Wavefront 
Coverage Path Planner (Zelinsky et al. 1993)  is ap-
plied over the navigable area inside a dilated version 
of the skeleton, allowing finding the waypoints over 
which the laser will be simulated. Then, using a ray 
casting algorithm and without a real-time simulation 
engine (such as Gazebo), laser sensor data and odom-
etry are simulated following the waypoints found in 
the previous step. Finally, a trajectory builder merges 
these sensor data creating an accurate pose graph-
based map, serialized as a .pbstream file for Cartog-
rapher or a .posegraph file for SLAM Toolbox.  

This pipeline allows the efficient automatic gener-
ation of Pose graph-based maps from 2D OGMs. As 
our OGM2PGBM workflow does not require Gazebo 
for data simulation, it is faster and more portable than 
a Gazebo-based pipeline, allowing its execution in an 
isolated manner. Moreover, since the technique does 
not consider the complete 3D model but only a 2D 
OGMs, it is very efficient. In addition, it can be used 
from any given OGMs, which besides of been 

Figure 1: Proposed IFC to Pose Graph-based map for robust 2D-LiDAR localization. In the first step, an OGM is created from Multi-
story non-convex BIM models which can have slanted floors, this map is suitable for path planning and autonomous robot navigation. 
In the second step, a Pose Graph-based map is generated from the OGM. Finally, in the third step, these maps allow fast global 
localization and robust pose tracking in changing and dynamic environments. 



generated from a BIM model (with the method pre-
sented in the previous section), can be generated out 
of a floor plan or a previously scanned map. Graph 
optimization is not required since every scan's posi-
tion is known accurately from the simulation. 

4.3 Robust Localization 
Once the different needed map representations (OGM 
and pose graph-based maps) are generated from a 
BIM model, they can be used for robust localization 
in changing environments. 

We propose to take advantage of the Self-Adaptive 
PF of GMCL to spread particles only in the SER re-
gions and solve the global localization problem effi-
ciently. As it is shown later (in Section 6), PF algo-
rithms being able to represent non-Gaussian 
distributions can solve the global localization faster 
than graph-based algorithms. 

Once an estimated pose is found with a covariance 
smaller than 0.05, the nodes of GMCL are stopped, 
and a GBL algorithm can be started. 

For example, to track the Pose of the robot accu-
rately, Cartographer can be activated with the 
start\_traj service at the time when GMCL converges 
and using the .pbstream map generated with the 
method proposed in Section 4.2. 
Similarly, SLAM Toolbox can be started with an ini-
tial pose, however with a prior .posegraph map. 

5 EXPERIMENTS  

This section presents the evaluation scenarios de-
signed to evaluate the various techniques and details 
of the implementation and evaluation. 

5.1 Evaluation Scenarios 
As illustrated in Figure 2, three different scenarios 
were conceived to evaluate the different methods. 

Each scenario increases the level of clutter present 
in the environment and, therefore, decreases the level 
of overlap that a perception sensor would have with 
permanent building objects (such as walls, columns, 
floors, and ceilings). The latter are the elements that 
are usually present in a BIM model. 

Additionally, to increase the simulation's realism 
level, we added animated walking human models 
(also called dynamic agents) moving in the environ-
ment. In scenarios 1 and 2, five humans walk from 
each Room to the closest exit of that Room. In the 
scenario Nr. 3 (“Disaster”), a total of six people move 
faster, trying to escape through the main door. Once 
the agents reach their goal, they start again, moving 
from their initial planned position in an infinite loop. 

(a) 1 (b) 2 (c) 3 
Figure 2: Evaluation Scenarios. (a) Empty Room: represents a 
typical BIM Model, without furniture; (b) Reality: represents a 
standard office environment and is based on real-world TLS 
data; (c) Disaster: is an environment after a simulated disaster 
with large Scan- BIM deviations. 

5.2 Gazebo Simulation 
To simulate the experimental data, we use Gazebo. 
Once the IFC model is converted to Collada format 
using IfcConvert, it can be imported into Gazebo. 
While importing complex IFC models in Gazebo is 
essential to ensure that every element has its own ge-
ometric representation. One way to avoid instantiat-
ing multiple objects from the same data is using the 
export capabilities of Blender. 

For trustworthy data simulation, we separate be-
tween collision and visual models. Since LiDAR sen-
sors cannot perceive glass materials, windows and 
glass doors were removed in the collision models. 

5.3 Robot Simulation 
The robot used for the simulated experiments was the 
holonomic Robotnik SUMMIT XL equipped with a 
2D LiDAR Hokuyo UST-10LX.  

It was commanded with stable linear and angular 
velocities at approximately 1 m/s and 1 deg/s, respec-
tively. 

Using the URDF model of this robot, it is possible 
to leverage the different packages of the ROS Navi-
gation Stack for RViz. One of these packages is 
NAVFN which assumes a circular robot and allows 
to plan a path from a start point to an endpoint in a 
grid based on a Costmap. A Costmap is an inflated 
version of the given 2D OGMs with a specified am-
plification radius created to avoid the robot colliding 
with obstacles while navigating through the environ-
ment. 

The Gazebo Plug-in PgmMap creator (Yang 2018) 
was also implemented to speed up the usage of the 
OGMs for robot simulation, allowing the creation of 
maps with known origin positions. This step is not re-
quired in practice since the alignment between the 
real world, and the map can be retrieved as a locali-
zation system result. It is worth mentioning that using 
navigational goals instead of single movement com-
mands is very convenient for data simulation since it 
significantly reduces the probability of collisions, 
which can make the entire sequence useless. 



(a) 1-1 (b) 1-2 (c) 2-1 (d) 2-2 (e) 3-1 (f) 3-2 
Figure 3: Sequences of data with the respective OGMs. (a) and (b) correspond to an empty environment (i.e., without furniture) with 
and without dynamic agents resp.; (c) and (d) similar but in a scenario with furniture as it is in the real world; (e) and (f) in the disaster 
environment. To better visualize the different levels of Scan-BIM deviations, the OGM of the empty environment is presented over 
the other OGMs in blue color. The change in color of the trajectory represents the initial and end position of the robot, with dark blue 
being the start and red the endpoint. 

Following this approach, 2D LiDAR, Inertial 
Measurement Unit (IMU)  measurements, Wheel 
odometry, and ground truth odometry were simulated 
in the six scenarios (three models with and without 
dynamic agents). The resulted trajectories of the sim-
ulation are presented in Figure 3. 

5.4 Experimental details 
Due to the stochastic nature of PF algorithms and sim-
ilarly as done by Alshikh Khalil & Hatem (2021), 
these methods were executed 30 times in each se-
quence, and the average values were calculated. 

As Zimmerman et al. (2022), we consider that a 
method converges when its pose estimate is within 
0.5 m from the ground truth pose. If, after the first 95 
% of the sequence, convergence does not happen, 
then it is considered a failure. 

Unfortunately, SLAM Toolbox could not be evalu-
ated for global localization since it does not provide 
this service. The lifelong mapping mode of SLAM 
Toolbox was also tested for completeness; however, 
it yielded unwanted results with poor performance. 

6 RESULTS AND ANALYSIS 

The libraries provided by Grupp (2017) were used to 
calculate the error metrics of the various methods on 
the different sequences. 

6.1 Pose tracking 
In Table 1 we present the translational and rotational 
Root Mean Square Error (RMSE) for each sequence 
for each method evaluated on the pose tracking prob-
lem with the ground truth from the simulation. 

Figure 4 presents a summary of the statistics of the 
translational errors for all the methods in all se-
quences. 

Overall, it can be seen that GBL methods always 
perform better than PF algorithms in the pose tracking 
problem. 

Among the tested PF algorithms, GMCL performs 
most of the time better than AMCL. Only in the sce-
narios 2-2, 3-1, and 3-2, AMCL achieves lower 
RMSE. In scenarios 2-2 and 3-2 GMCL has a very 
high translational RMSE. This shows that the addi-
tional filters of GMCL cause the method to be more 
sensitive to dynamic environments in changing envi-
ronments. 

Regarding the GBL algorithms, SLAM Toolbox 
achieves the best performance in scenarios 1 and 3. 
As expected, scenario 3 (with the most significant 
Scan-BIM deviations) was the most challenging sce-
nario for all the methods. On top of that, in this sce-
nario, the pure localization mode of Cartographer al-
ways found wrong data associations, resulting in 
wrong relative constraints that cause localization fail-
ure. Therefore, Cartographer could not be quantita-
tively evaluated in this environment, even when an 
initial approximated pose was provided. Nonetheless, 
Cartographer achieved an impressive performance in 
scenario 2 (real-world scenario), accomplishing a 
translational RMSE four times lower than SLAM 
Toolbox in the environment without dynamic agents 
(7.19 cm and 28.69 cm, respectively) and almost six 
times lower in the scenario with dynamic agents (4.11 
cm and 23.57 cm respectively). 

6.2 Global localization 
The performance of the different methods regarding 
convergence time is presented in Figure 5 GMCL, 
thanks to its Self-Adaptive PF, performs the best in 
the global localization problem. Only in scenario 1-2 
Cartographer shows a slight superiority. Meanwhile, 
AMCL always takes at least twice as long compared 
to the other methods to converge to a good pose. In 
addition, it does not converge in scenario 2-1. 

Due to the high level of Scan-BIM deviations, 
none of the implemented methods converges while 
trying to solve the global localization problem in sce-
nario 3. 



Table 1: Summary of the quantitative evaluation results for each sequence. Translational RMSE in centimeters and angular RMSE in 
degrees, respectively. 

Method 1-1 1-2 2-1 2-2 3-1 3-2 
AMCL 8,49 0,44 8,47 0,50 33,68 2,71 37,44 3,26 63,04 3,29 65,12 3,37 
GMCL 8,27 0,24 7,86 0,24 24,27 2,57 52,38 4,37 66,60 3,70 126,91 4,46 

SLAM Toolbox 3,69 0,17 3,95 0,17 28,69 1,50 23,57 1,50 37,84 1,34 37,96 1,70 
Cartographer 11,89 0,22 4,04 0,21 7,19 0,15 4,11 0,21 - - - - 

 

7 CONCLUSIONS 

In this paper, besides contributing with methods to 
create OGMs from BIM models and transforming 
them to pose graph-based maps for robust localiza-
tion, we provide an extensive comparison of diverse 
state-of-the-art localization 2D-LiDAR algorithms in 
three different levels of Scan-BIM deviations, with 
and without dynamic agents.  

We found that GBL algorithms overperform PF al-
gorithms in the pose tracking problem.  
In the case of a map with very low (or negligible) 
Scan-BIM deviations, SLAM Toolbox achieves the 
best performance.  

On the contrary, if the map has a medium level of 
Scan-BIM deviations (for example, due to large 
pieces of furniture or as-planned and as-built differ-
ences), as in a real-world office building, Cartogra-
pher is the best performing method. 

However, in a case where the level of changes in 
the environment is too high (such as in scenario 3), 
SLAM Toolbox, while with a relatively high error, 

would be the best option among the tested localiza-
tion algorithms. 

The fact that PF algorithms only consider the most 
recent observation to update the belief of the current 
Pose gives them certain robustness to deal with high 
ambiguity scenarios (such as scenario 3).  

However, it also causes high inaccuracies when 
the level of Scan-BIM deviations is medium (such as 
in scenario 2). On the other hand, GBL algorithms 
taking advantage of a recent history of observations 
can better handle this real-world scenario and can 
track the robot's Pose more accurately. 

Nonetheless, GMCL performs better for the global 
localization problem than GBL algorithms. 

In general, we recommend using a GBL algorithm 
for accurate BIM-based (or floor plan-based) 2D Li-
DAR pose tracking in real-world environments and 
GMCL for global localization. 

To facilitate the correct implementation of Graph-
based Localization algorithms, we contribute with an 
open-source method to create accurate pose graph-
based maps from any OGMs. In addition, we provide 
a method to create OGMs from complex multi-story 
BIM models, which can additionally be leveraged for 
path planning and autonomous navigation. State-of-
the-art SLAM techniques have switched from using 
particle filters to graph-based optimization ap-
proaches; based on our experiments, we can conclude 
that it will be analogously advantageous for most lo-
calization systems. 

8 FUTURE WORK 

In the light of the experimental results and motivated 
by related research, we believe that the following are 
promising future research directions: 

Consider not only 2D-LiDAR information but also 
3D-LiDAR sensor data is a promising direction to re-
liably handle significant Scan-BIM deviations, as par-
tially shown by Blum et al. (2020) and Moura et al. 
(2021) 

Fusing multiple sensor modalities, such as IMU, 
RGB-D cameras, and LiDAR sensors, would increase 
the robustness of a localization method to deal with 
fast angular movements and deprecated scenarios, as 
demonstrated by Lin & Zhang (2021) and Xu et al. 
(2022). 

To achieve major robustness, the extraction of de-
tailed information from a BIM model, such as the 

Figure 5. Statistics of the pose error estimates in translation for 
each method on the six evaluation scenarios. 
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Figure 4 Convergence time in seconds for the various methods 
in the different scenarios. 
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position of room numbers labels, doors, and win-
dows, can support solving the global localization 
problem even in symmetric environments, as done by 
Zimmerman et al. (2022) and Haque et al. (2020). 
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