TUM Department of Civil, Geo and Environmental Engineering
Chair of Computational Modeling and Simulation
Prof. Dr.-Ing. André Borrmann

Analysis of Methods for Automated Symbol Recognition in Technical Drawings

Deian Stoitchkov

Bachelorthesis
for the Bachelor of Science Course Civil Engineering

Author: Deian Stoitchkov
Student ID: [Redacted]
Supervision: Prof. Dr.-Ing. André Borrmann
Simon Vilgertshofer, M.Sc.
Date of Issue: 14. November 2017
Date of Submission: 14. April 2018
Abstract

Even in today’s modern world, in which almost everything is digitized, many technical drawings are still only available in paper form. The main reason for this is that most of the infrastructure we see was built before the widespread availability of computers. Many of these drawings are now being digitized so as to be used by modern computer programs. Much of the digitization process of a technical drawing consists of recognizing and locating different symbols which is often a difficult and time-consuming task. Therefore, this work aims to find a method of automating the process and drastically reducing the processing time.

This work begins with some basic computer vision techniques that can be very accurate, but only under certain conditions. Next, a more complex and versatile method of machine learning is proposed (Cascade Classifiers), which can be used in a multitude of situations. However, the Cascade Classifiers method still faces difficulties if a simple symbol with too few features needs to be recognized. Therefore, another technique is proposed that uses artificial neural networks to find symbols in large technical drawings. This method includes training that requires a powerful graphics processing unit (GPU), but shows very promising results. Ultimately, a graphical user interface (GUI) is created for the program which enables simple operations without in-depth programming knowledge.
Zusammenfassung

Contents

1 Introduction 2

2 OpenCV and Python 3
 2.1 Template Matching 3
 2.1.1 Theory 4
 2.1.2 Implementation and results 5
 2.1.3 Improvements 9
 2.1.4 Limitation 13
 2.2 Contours 14
 2.2.1 Theory 14
 2.2.2 Implementation and results 18
 2.2.3 Limitation 23
 2.3 Cascade Classifiers 24
 2.3.1 Theory 24
 2.3.2 Implementation and results 26
 2.3.3 Limitation 32

3 Neural networks with Keras and TensorFlow 33
 3.1 The theory behind Convolutional Neural Network 34
 3.2 Implementation and Results 38
 3.3 Limitations 45

4 Practical implementation with graphical user interface 46
 4.1 Windows Presentation Foundation and Emgu CV for Template Matching 47
 4.2 Python and Tkinter for Neural Networks 48

5 Conclusion 50
Chapter 1

Introduction

With the help of modern day computer programs, planning and construction has become a simpler and often faster process. To use these helpful programs, most of the data is being digitized. However, digitizing old technical drawings can be a very tedious task as many different symbols have to be manually recognized and located. This work aims to find the best technique to automate the process of manually searching for symbols.

Symbol recognition is a well-known challenge yet few techniques have been proposed. In Weber et al. (2012) a template matching operator HMTAIO (Hit-or-Miss Transform Adapted to Information Overlapping) is described. "The advantage of our approach compared to correlation methods is its robustness to occlusion and overlapping. Moreover, our method is enough robust to be applied on real documents unlike the majority of previous ones". The results show a very good spotting rate of 98-100% even with a variety of symbols. Another technique is proposed in Luqman et al. (2009) which represents symbols by their graph based signatures. "A graphic symbol is vectorized and is converted to an attributed relational graph, which is used for computing a feature vector for the symbol". Again, this method shows a very high recognition rate and is rotation and scale invariant. Different symbol spotting methods are also described in Rusiñol et al. (2006) and Nayef et al. (2012).

However, this work is not based on these techniques. First, some basic computer vision techniques will be tested, followed by more sophisticated methods with artificial neural networks, none of which can be found in the previously mentioned papers. In the second chapter, some useful functions of the computer vision library OpenCV will be used to find symbols in technical drawings. In the first two sections, techniques are proposed which don’t require training and can be implemented with speed and efficiency but only work under certain conditions. In the third section, a more complex and versatile method is described which shows good results but still can’t be used for specific symbols. The last technique proposed in this work, which uses artificial neural networks, shows very promising results under many circumstances and has almost no implementational limits.
Chapter 2

OpenCV and Python

OpenCV is an open source computer vision library. The open source license for OpenCV means it is free for both academic and commercial use. It is written in C++ and can also be used in Python, Java and MATLAB. There are wrappers for different languages such as C#, Perl and Ruby. With over 500 built-in functions, OpenCV makes challenging tasks easy and fast to program. Therefore, OpenCV is the choice for building a symbol detection program.

In this chapter, different methods and functions from the OpenCV library will be used. Some of the most important ones are Template Matching, Contours and Haar Cascade methods. They are all easily accessible and therefore fast to implement.

Python is a high-level programming language that makes writing programs easier with fewer lines of code and has better code readability, which makes it perfect for non-professional programmers. For these reasons, it is the natural choice for programming and testing the methods described above.

2.1 Template Matching

The descriptions in this chapter are based on the explanations in Kaehler et al. (2016). Also, some online sources of information were used such as OpenCV (3.4.0) and OpenCV (2.4).

Template Matching is a method for searching and localization of a template image in a larger image. This is made by sliding the template image over the input (larger) image and comparing them at every position. In this case, the term "sliding" means moving the patch (template image) one pixel at a time - left to right, up and down. There are different comparison methods implemented in OpenCV, which will be explained in the next section.
2.1. THEORY

The result of the Template Matching method is a grayscale (also known as black-and-white or monochrome) image, where each pixel shows how much of the surroundings of that pixel match the template. The output image is a size of \((W-w+1, H-h+1)\), where \(W\) and \(H\) are the width and the height of the input image, \(w\) and \(h\) are the width and the height of the template image. It is important to note, that the output image is smaller than the input image. There are 3 different matching methods in OpenCV and for each one of them there is a normalized version. The normalized versions improve the matching by different lighting conditions as explained in Rodgers et al. (1988). The matching methods in OpenCV are listed below:

- **Square Difference Matching Method: TM_SQDIFF**
 The squared differences are matched, as a result a perfect match will be 0 and a poor match will be a large number.
 \[
 R(x, y) = \sum_{x',y'} (T(x', y') - I(x + x', y + y'))^2
 \]
 \[(2.1)\]

- **Normalized Square Difference Matching Method: TM_SQDIFF_NORMED**
 A perfect match is again 0, but a perfect mismatch will be 1.
 \[
 R(x, y) = \frac{\sum_{x',y'} (T(x', y') - I(x + x', y + y'))^2}{\sqrt{\sum_{x',y'} (T(x', y')^2 \cdot \sum_{x',y'} I(x + x', y + y')^2)}}
 \]
 \[(2.2)\]

- **Correlation Matching Method: TM_CCORR**
 The match is made by a multiplication, resulting in a big number for a good match and 0 for a complete mismatch.
 \[
 R(x, y) = \sum_{x',y'} (T(x', y') \cdot I(x + x', y + y'))
 \]
 \[(2.3)\]

- **Normalized Cross-Correlation Matching Method: TM_CCORR_NORMED**
 A complete mismatch with this method will be again 0, but a perfect match will be 1.
 \[
 R(x, y) = \frac{\sum_{x',y'} (T(x', y') \cdot I(x + x', y + y'))}{\sqrt{\sum_{x',y'} (T(x', y')^2 \cdot \sum_{x',y'} I(x + x', y + y')^2)}}
 \]
 \[(2.4)\]

- **Correlation Coefficient Matching Method: TM_CCOEFF**
 The result of this method will be a large positive number for a good match and a large
2.1. TEMPLATE MATCHING

A negative number for a poor match.

\[R(x,y) = \sum_{x',y'} (T'(x',y') \cdot I'(x + x', y + y')) \] \hspace{1cm} (2.5)

- Normalized Correlation Coefficient Matching Method: TM_CCOEFF_NORMED

A perfect match will be 1 and a perfect mismatch -1.

\[R(x,y) = \frac{\sum_{x',y'} (T'(x',y') \cdot I'(x + x', y + y'))}{\sqrt{\sum_{x',y'} (T'(x',y')^2 \cdot \sum_{x',y'} I'(x + x', y + y')^2}}} \] \hspace{1cm} (2.6)

where T is the template image, I is the input image, R is the result image and

\[T'(x',y') = T(x',y') - \frac{1}{(w \cdot h)} \cdot \sum_{x''',y'''} T(x'',y'') \]

\[I'(x + x', y + y') = I(x + x', y + y') - \frac{1}{(w \cdot h)} \cdot \sum_{x''',y'''} I(x + x'', y + y''). \]

After testing all of the methods explained above, the methods "TM_SQDIFF_NORMED" and "TM_CCOEFF_NORMED" were found to be the most accurate and therefore will be used in the next section. Both methods performed well by finding most symbols while keeping the false positives low (explained in more detail further in this chapter).

2.1.2 Implementation and results

The code in Listing 2.1 below will be explained through the whole section and will not be referenced further.

```python
1  ...
2  img_color = cv2.imread('input1.png')
3  img_gray = cv2.cvtColor(img_color, cv2.COLOR_BGR2GRAY)
4
5  template = cv2.imread('template.png')
6  temp_gray = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY)
7
8  res = cv2.matchTemplate(img_gray, temp_gray, cv2.TM_SQDIFF_NORMED)
9
10  threshold = 0.2
11  loc = np.where(res <= threshold)
12
13  file = open('results.txt', 'w')
14  h,w = temp_gray.shape
```
2.1. TEMPLATE MATCHING

Listing 2.1: Program code

In this section, the Template matching method will be used on a given image with the help of the OpenCV library. A part of a telecommunication technical drawing will be used as an input image, which is shown in Figure 2.1. A small cut from the input image of the exact symbol has been chosen as a template image - Figure 2.2.
In order to be accessed, the OpenCV and NumPy packages are imported into the program at the beginning. The NumPy library has powerful and easy to use functions to operate with arrays. This is very important for this task as every image is basically an array, which describes the pixels of the image.

The next step is to read the images from the source with the function "cv2.imread". The function loads an image from the specified file and returns a 3-channel color image (line 2). The colored image is then converted to a grayscale image with the "cv2.cvtColor" function, which uses the cv2.COLOR_BGR2GRAY method (line 3). This makes the search for the symbol faster and more accurate. The same steps are then taken for the template image (lines 5 and 6).

On the next line (line 8) the function "cv2.matchTemplate" is called with the comparison method TM_SQDIFF_NORMED (Equation 2.2). The result is a black-and-white image, where the brightest locations indicate the highest matches. They are marked with red circles in Figure 2.3. With the method used, the result image has values between 0 and 1, where 0 will be a perfect match and 1 a complete mismatch.
2.1. TEMPLATE MATCHING

As all of the images are represented as arrays, they could be easily accessed and transformed with the help of the NumPy library. The function "np.where" is used to find the locations of the highest matches in the result image (lines 10 and 11). Next, a threshold has to be set, below which the result will be assumed as a correct match. In this case, the threshold is set to 0.2, which means that all the elements of the array that have a value below 0.2 are assumed to be a proper match. Because 0 is a perfect match and 1 is a complete mismatch, this means that all the results with higher than 80% match will be accepted as a correct match. All of the correct matches are then stored in an array called ”loc”. The x-coordinates of the matches are stored in loc[1] and the y-coordinates in loc[0] respectively.

The next step is to iterate through all of the correct matches, where ”x” and ”y” are the coordinates of the upper left corner of a given match. The size of the template image is required to draw a rectangle around every correct match. It can be found with the help of the function "shape" as shown in (line 14). The function returns the height and the width of the given image, in this case the template image. A rectangle can be then drawn over the input image with the help of the function "cv2.rectangle" (line 21). It is important to note that a new image will not be created, but instead the original image will be replaced. For this function 5 arguments are required. The first is the input image, the second is the upper-left corner of the rectangle, the third is the bottom-right corner, the fourth is the color of the rectangle in a BGR (Blue-Green-Red) color space and the fifth is the thickness of the lines that make up the rectangle.

A text file containing all the matches with the corresponding coordinates will be created in addition to the drawn rectangles. The text file will be saved in the directory of the program with the name ”results.txt”. The built-in function in Python “open” opens a file with the given name or if the file doesn’t exist it creates one (line 13). The center point of every match is then calculated (lines 23 and 24). Ultimately, a string is created with the corresponding number and coordinates of a match and is saved in the text file with the function "write" (lines 26 and 27). At the end, the text file has to be closed (line 29).

To evaluate the Template Matching method, the time elapsed will be measured. For this, the function ”datetime.now” from the library datetime will be used. Firstly, the function is called and the exact current time is noted. At the end of the program the difference between the start time and the current time is calculated and displayed to the user. The input image with the drawn rectangles on it is then shown to the user in a resizable window with the help of the functions ”cv2.namedWindow” and ”cv2.imshow”.

The final result can be seen in Figure 2.4. The image shown is the same as the input image but with red rectangles marking where matches have been found. The program has found the correct matches in just 0.09 sec. For an input image with a size of 1721x927 pixels this is notably fast. The problem is that, although only three rectangles are drawn in the result
image, the list in the result text file is longer with most of the matches having almost the same coordinates. A simple solution to this problem will be described in the next section.

2.1.3 Improvements

In this section, Listing 2.2 will be explained and will not be referenced further.

```python
... 2 x 3 4

for x,y in zip(loc[1],loc[0]):
    if (x != x_old+1 and y != y_old+1 and x != x_old+2 and y != y_old+2):
        roi = img_gray[y:y+h, x:x+w]
        res_2 = cv2.matchTemplate(roi,temp_gray,cv2.TM_CCOEFF_NORMED)
        _,max_val,_,_ = cv2.minMaxLoc(res_2)
        if max_val >= 0.27:
```
As shown in the previous section the method finds more matches than the actual number of matches. After analyzing the result text file it can be seen that the coordinates of most of the matches are very close to one another. This is because the Template Matching method finds the same symbol multiple times with slightly different coordinates. For this reason, the code shown in Listing 2.1 will be modified and the redundant matches removed.

Every match will be checked whether it differs from the last match with at least two pixels in x- and y-direction (line 11). If this condition is false, the match will not be considered as a result. The "x_old" and "y_old" are set to -2, so that the condition of the if statement is always true for the first match (lines 2 and 3). As a result there are only three correct matches, which can be seen in Listing 2.3. However, this will work only if there are no actual matches with the same x- or y-coordinates.

Another improvement of the code in Listing 2.1 is to eliminate some of the false positives. False positives are objects incorrectly characterized as a match. In the example in the previous chapter there are no false positives because the threshold value was carefully selected. For example, if the threshold value is set to 0.251 instead of 0.2, there will be 38 matches, instead of only 3 (Figure 2.5). It is very often not possible to adjust the threshold value so that there are no false positives.

The different comparison methods in OpenCV (Equations 2.1-2.6) deliver slightly different false positives. When the same program (Listing 2.1) is tested, but this time with **TM_CCOEFF_NORMED**, it delivers different false positives (Figure 2.6). With this comparison method the result image has values between -1 and 1, where 1 is a perfect match and -1 is a perfect mismatch. The threshold value is then chosen so that there are again exactly 38 matches - the same amount as with the **TM_SQDIFF_NORMED** - comparison method. It will then be compared between the first 38 matches from both methods. As a result many of the false positives are different, whereas the correct matches are still the same.
The different false positives can be eliminated when both methods are combined and used together in the same program. First the "cv2.matchTemplate" function with the comparison method TM_SQDIFF_NORMED (Equation 2.2) is called. A region of interest (ROI) is then cut from the input image for every match that satisfies the conditions explained above. The ROI has the same size as the template image and the location of a given match (line 9).

The "cv2.matchTemplate" function is then called again, but this time not for the input image, but instead for the ROI and the template image. This time the comparison method TM_CCOEFF_NORMED (Equation 2.6) is used (line 11). As explained in the previous section, all images are stored as arrays. The function "cv2.minMaxLoc" is then used, which finds the global minimum and maximum in an array. In this case only the maximum is relevant (line 13). A threshold value is then again chosen that helps to categorize the matches as correct or not (line 15).

There are fewer false positives when the same threshold values are chosen for both comparison methods, which can be clearly seen in Figure 2.7. This shows that with using two comparison methods, instead of only one, the amount of false positives could be reduced. In this case, the program was executed for just 0.1 seconds, which is almost identical if only one method is used. This is because the second method is used only for the ROI instead of the whole image and thus barely affects the speed of the program.

![Figure 2.5: Match results with TM_SQDIFF_NORMED](image-url)
2.1. TEMPLATE MATCHING

Figure 2.6: Match results with TM.CCOEFF.NORMED

Figure 2.7: Match results with both comparison methods
2.1.4 Limitation

The Template Matching method is easy to implement and with the improvements described in the previous section, also quite accurate. However, it has its limitations.

The method explained in this chapter is scale and rotation variant. That is to say, that if the template image is even slightly scaled or rotated in comparison to the input image, no correct matches will be found. This problem could be eliminated by rotating and scaling the template image. This means that the input image will be searched multiple times for every different rotation and scale of the template image. However, this solution is extremely inefficient and slow. For example, if the template image is rotated in 20 different angles and scaled with 10 different scale factors, the input image has to be compared 200 times with the template image. This is the so-called "brute force" algorithm and it significantly increases the time needed for the task. For large images, it can even take hours to find a match.

Some techniques for boosting the effectiveness of the method exist. Such techniques are proposed in Kim et al. (2007), where a so-called "Ciratefi" algorithm is used, which consists of three cascaded filters. Each filter excludes pixels that have no chance of matching the template from further processing while keeping the most probable pixels that can match the template. As stated in Kim et al. (2007) this algorithm can be, in some cases, up to 400 times faster than the brute force algorithm, while having the exact same results. But this technique goes beyond the scope of this work and is not discussed further.

Adjusting the threshold value to differentiate the correct matches from the false positives is yet another challenge for the Template matching method. If the threshold value is set to low, there will be too many false positives. If it is set too high, no matches will be found. For each input and template image, the threshold value must be carefully selected so that only the correct matches are recognized by the program. For this reason, more flexible methods will be described in the next chapters.
2.2 Contours

The explanations and examples in this chapter are inspired by Kaehler et al. (2016) and OpenCV (3.4.0).

"Contours can be explained simply as a curve joining all the continuous points (along the boundary), having the same color or intensity. The contours are a useful tool for shape analysis and object detection and recognition" (OpenCV, 3.3.1). For the given image in Figure 2.8 - left there are two contours shown with red and green lines in Figure 2.8 - right, one around the rectangle and one around the triangle. As it can be seen in the example, a contour lies on the border between the black and the white spaces and thus it represents the form of a given shape.

![Figure 2.8: Contours](image)

2.2.1 Theory

The contours in Figure 2.8 - right were found with the help of the function ”cv2.findContours”. It is important to understand how the different contours relate to one another. For this purpose the concept of a contour tree will be explained, which was first proposed by G. Reeb and further developed in Bajaj et al. (1997) and Kreveld et al. (1997). A contour tree contains the relationship between contours and is important when doing a comparison.

In Figure 2.9, gray regions are positioned on a white background, where every region has a different shape. The contours of the shapes can be seen as red and green lines around the shapes. The red lines are labeled cX and the green lines hX, where c stands for ”contour”, h stands for ”hole” and X is some number (Kaehler et al., 2016). The red lines represent the exterior boundaries of a given shape. The green lines can be seen as the interior boundary of the shape or as the exterior boundary of the white space in it. In the example above (Figure 2.8) the red lines represent the outer boundary of the rectangle and the green lines represent the outer boundary of the ”hole” in the rectangle.
The contour tree contains the hierarchy between the contours or how they relate to one another. In OpenCV, the hierarchy is stored in an array with one entry for each contour. Each entry contains an array of four elements, each indicating the connected contours with the current one. There are four possible ways to represent a hierarchy in OpenCV - "cv2.RETR_EXTERNAL", "cv2.RETR_LIST", "cv2.RETR_CCOMP" and "cv2.RETR_TREE". In this work only the "cv2.RETR_TREE" type of hierarchy will be discussed and further explained, since it is best structured and therefore easiest to use. It retrieves all the contours and creates a graph like the one shown in Figure 2.10 - right, where each node is a contour connected by edges with the corresponding contours.

For the given contours in Figure 2.9 the resulting contour tree is shown in Figure 2.10 - right. Every number in the contour tree corresponds to the id of a given contour. The corresponding ids of the contours are shown in Figure 2.10 - left. When a contour is inside another contour, it can be seen as a child contour. In the contour tree, every child is below its parent. For example, the contours with id-1 and id-2 are the children of the contour 0 and contour 2 is the parent of the contour 4. In OpenCV, these relationships are stored in an array with four values - [Next, Previous, First Child, Parent] (OpenCV, 3.4.0). "Next" represents the next contour at the same hierarchical level. For example, the next contour of contour 1 will be contour 2. Contour 2 has no "next" contour, but it has a "previous" contour, which in this case is contour 1. "First_child" stand for the first contour that lies in the given contour. The "first_child" contour with id 6 will be the contour 8. "Parent" represent the contour in which the given contour lies. For contour 9, that would be contour 6. An example hierarchical
2.2 CONTOURS

Array for contour 2 will look like this: [-1, 1, 4, 0], where -1 denotes that there is no such relationship.

<table>
<thead>
<tr>
<th>id</th>
<th>contour</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>c0</td>
</tr>
<tr>
<td>1</td>
<td>h00</td>
</tr>
<tr>
<td>2</td>
<td>h01</td>
</tr>
<tr>
<td>3</td>
<td>c000</td>
</tr>
<tr>
<td>4</td>
<td>c010</td>
</tr>
<tr>
<td>5</td>
<td>h0000</td>
</tr>
<tr>
<td>6</td>
<td>h0100</td>
</tr>
<tr>
<td>7</td>
<td>c0000</td>
</tr>
<tr>
<td>8</td>
<td>c01000</td>
</tr>
<tr>
<td>9</td>
<td>c01001</td>
</tr>
</tbody>
</table>

Figure 2.10: Contour tree with cv2.RETR_TREE

Next, a "contour moment" will be explained. The explanation formulation is aided by Kaehler et al. (2016) and Knieć (2011). Contour moments have been widely used in computer vision for a long time. With image moments two contours can be compared with one another and thus the similarities between them can be found. A moment is a characteristic of a given contour calculated by summing over the pixels of that contour. The \((p,q)\) moment of an image is defined as:

\[
m_{p, q} = \sum_{x,y} I(x, y) \cdot x^p \cdot y^q
\]

Here the moment \(m_{p,q}\) is the sum over all the pixels in the object. \(P\) is the x-order and \(q\) is the y-order. Order means the power to which the corresponding component is taken in the sum. If \(p\) and \(q\) are both equal to 0, then the \(m_{0,0}\) moment is the length of the contour in pixels (Bradski et al., 2008).

The problem of the moments explained above is that they are not invariant to translation, rotation or scaling. Therefore, the concept of the Hu invariant moments will be explained next. Introduced first in Hu (1962), these moments are invariant to scale, rotation and translation by combining the different normalized central moments. First, a central moment will be explained. It is invariant under translation and is defined as follows:

\[
\mu_{p, q} = \sum_{x,y} I(x, y) \cdot (x - \bar{x})^p \cdot (y - \bar{y})^q
\]

where:

\[
\bar{x} = \frac{m_{10}}{m_{00}} \quad \text{and} \quad \bar{y} = \frac{m_{01}}{m_{00}}
\]
Next, a normalized central moment is not only a translation invariant but also a scale invariant. The normalized central moments achieve scale invariance by factoring out the overall size of the object and are defined with the following formula:

$$\nu_{p,q} = \frac{\mu_{p,q}}{m_{00} \left(\frac{p+q+2}{2} \right)}$$ \hspace{1cm} (2.9)

Finally, the Hu invariant moments are combinations of the normalized central moments. They are defined as follows:

$$h_1 = \nu_{20} + \nu_{02}$$ \hspace{1cm} (2.10)

$$h_2 = (\nu_{20} + \nu_{02})^2 + 4 \cdot \nu_{11}^2$$ \hspace{1cm} (2.11)

$$h_3 = (\nu_{30} - 3 \cdot \nu_{12})^2 + (3 \cdot \nu_{21} - \nu_{03})^2$$ \hspace{1cm} (2.12)

$$h_4 = (\nu_{30} + \nu_{12})^2 + (\nu_{21} - \nu_{03})$$ \hspace{1cm} (2.13)

$$h_5 = (\nu_{30} - 3 \cdot \nu_{12}) \cdot (\nu_{30} + \nu_{12}) \cdot ((\nu_{30} + \nu_{12})^2 - 3 \cdot (\nu_{21} + \nu_{03})^2) + (3 \cdot \nu_{21} - \nu_{03}) \cdot (\nu_{21} + \nu_{03}) \cdot (3 \cdot (\nu_{30} + \nu_{12}) - (\nu_{21} + \nu_{03}))$$ \hspace{1cm} (2.14)

$$h_6 = (\nu_{20} - \nu_{02}) \cdot ((\nu_{30} + \nu_{12})^2 - (\nu_{21} + \nu_{03})^2) + 4 \cdot \nu_{11} \cdot (\nu_{30} + \nu_{12}) \cdot (\nu_{21} + \nu_{03})$$ \hspace{1cm} (2.15)

$$h_7 = (3 \cdot \nu_{21} - \nu_{03}) \cdot (\nu_{30} + \nu_{12}) \cdot ((\nu_{30} + \nu_{12})^2 - 3 \cdot (\nu_{21} + \nu_{03})^2) - (\nu_{30} - 3 \cdot \nu_{12}) \cdot (\nu_{21} + \nu_{03}) \cdot (3 \cdot (\nu_{30} + \nu_{12})^2 - (\nu_{21} + \nu_{03})^2)$$ \hspace{1cm} (2.16)

By combining the different normalized central moments invariant functions are created, which represent different aspects of the image with scale, rotation and translation invariance. The first one, h_1, is analogous to the moment of inertia around the image’s centroid, where the pixels’ intensities are analogous to physical density. The last one, h_7, is skew invariant, which enables it to distinguish mirror images of otherwise identical images” (Wikipedia).

In OpenCV, the Hu invariant moments can be easily computed with the help of the function "cv2.HuMoments", which will be shown in the next section. The contours found can be then compared with "cv2.matchShapes", which returns a number showing the similarity between two contours. If the number is small, there is a good match between the contours. There are three types of comparison methods, which can be used with the "cv2.matchShapes"-function. They are defined as follows (Kaehler et al., 2016):
- cv2.CONTOURS.MATCH_I1

\[I_1(A, B) = \sum_{i=1}^{7} \frac{1}{\eta_i^A} - \frac{1}{\eta_i^B} \]

(2.17)

- cv2.CONTOURS.MATCH_I2

\[I_2(A, B) = \sum_{i=1}^{7} |\eta_i^A - \eta_i^B| \]

(2.18)

- cv2.CONTOURS.MATCH_I3

\[I_3(A, B) = \sum_{i=1}^{7} \left|\frac{\eta_i^A - \eta_i^B}{\eta_i^A}\right| \]

(2.19)

where \(\eta_i^A \) and \(\eta_i^B \) are defined with the following equations:

\[\eta_i^A = \text{sign}(h_i^A) \cdot \log(h_i^A) \quad \text{and} \quad \eta_i^B = \text{sign}(h_i^B) \cdot \log(h_i^B) \]

and \(h_i^A \) and \(h_i^B \) are the Hu invariant moments of given images A and B. From these matching methods it can be seen that the result is the sum of the differences between the 7 Hu invariant moments (Equations 2.10 to 2.16). If the differences are small, the two objects that are compared are similar to one another.

The methods explained in this chapter will be demonstrated next with an example. After testing, the results have shown that the comparison method “cv2.CONTOURS.MATCH_I1” works best and will therefore be used.

2.2.2 Implementation and results

The methods explained in the previous section will now be tested. For this purpose, a template image will be searched in a bigger image. It is important to note that the template image is not a part of the larger image, but rather a completely different image, in which the symbol in question looks like some of the symbols in the big image. It is also important that the template image has a different size and is rotated in comparison to the symbols in the big image. Such a template image would not work with the method explained in chapter 2.1.

As a template image for this example the image in Figure 2.12 will be used. The bigger image or the input image can be seen in Figure 2.11.
After the OpenCV and NumPy library are imported into the program, the test images are loaded from the file directory. The function "cv2.findContours" (explained in the previous section) takes a binary image as an input image. Owing to this, the given images have to be preprocessed. A binary image is an image that has only two possible values for each pixel. Such image can be computed with the help of "cv2.threshold" (Listing 2.4 lines 5 and 6). Before using this function the color images have to be transformed to a grayscale (black-and-white) images, which have only 1 channel and not the usual 3 channels for the Red, Green and Blue colors (Listing 2.4 lines 2 and 3). The idea of a thresholded image is that all the pixel values of the image can have only two different values depending on whether the pixel values are above or below a given threshold. For example, the array that represents the grayscale image in Figure 2.13, that is 8 pixels wide and 8 pixels high, would look like this:
2.2. CONTOURS

The pixel values of the grayscale image are represented in the matrix that is shown above. Every pixel value can be a number between 0 and 255. In this example, 255 stands for a white pixel, 127 for a gray one and 0 for a black pixel, which is the typical representation of a grayscale image. Hence, if a threshold function is applied to this image, there will be only two pixel values - 0 and 255. In this example if a threshold value is set to 130, every pixel value that is below 130 will be set to 0 and if above 130 will be set to 255 respectively. In the given example this means that all the pixel values that equal 127 will be changed to 0 and thus there will be two black lines instead of a black and a gray one (Figure 2.13).

Listing 2.4: Program code - first part

```python
# ... 
imgray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
temp_gray = cv2.cvtColor(temp, cv2.COLOR_BGR2GRAY)

_, thresh = cv2.threshold(imgray, 200, 255, 0)
_, thresh_temp = cv2.threshold(temp_gray, 200, 255, 0)

_, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
_, contours2, hierarchy2 = cv2.findContours(thresh_temp, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# ... 
```
After the preprocessing step is finished, the function “cv2.findContours” is called for both the template image and the input image. It returns the contours in the images and the hierarchy between them (Listing 2.4, lines 8 and 9). The hierarchy is represented as a contour tree as explained in the previous Section 2.2.

Listing 2.5 will be used for the next explanation and will not be further referenced.

The next step is to compare every contour from the input image with the outer contour from the template image. This is made with the function “cv2.matchShapes”. The function returns the differences between the Hu invariant moments of two contours (explained in the previous section 2.2). It is important to highlight that the first contour in an image is the border of the image. The second contour actually describes the first contour of an object in the given image and will be therefore compared (line 3). If the differences are small, the contours are similar to one another. The next step is to set a threshold value for the result from “cv2.matchShapes”. In the example, it is set to 0.1, which means that if the result is below 0.1, it will be accepted that the contours are similar to one another. If the template object has a child contour (explained in the previous section 2.2), it will be compared, in addition to the outer contour for better accuracy. For the given template image (Figure 2.12) the outer contour is the boundary of the circle and the child contour is the boundary of the white semicircle, that lies within the circle. To check whether a particular contour has a child contour, it is controlled whether the template image has more than 2 contours and whether the parent id of the following contour is equal to the id of the given contour (line 6). As it was previously explained, the fourth element of the hierarchy array of a given contour denotes the parent of this contour.

The child contours are then compared again with the function “cv2.matchShapes” and a new threshold value is set once more to 0.1 (lines 8 and 10). If all the conditions mentioned above are met, the shape found in the input image is accepted as a good match and the contour around it is drawn in red (lines 11-13). However, if the template shape has no child contours, which means it is a filled shape without ”holes” in it, it is accepted as a semi-good match and is drawn again, but in a different color (lines 17-19).

The result for the given input image (Figure 2.11) and template image (Figure 2.12) can be seen in Figure 2.14. The method explained in this chapter has accurately found every matching symbol in the input image, although the template image is rotated and scaled compared to the symbols in the input image.
2.2. CONTOURS

Figure 2.14: Result

```python
... for i in range(1, len(contours)):
    ret = cv2.matchShapes(contours[i], contours2[1], cv2.CONTOURS_MATCH_I1, 0)

    if ret < 0.1:
        if (len(contours2) > 2 and hierarchy[0][i+1][3] == i):
            ret2 = cv2.matchShapes(contours[i+1], contours2[2], cv2.CONTOURS_MATCH_I1, 0)

            if ret2 < 0.1:
                print('Good match. Match No.:', num)
                cnt = contours[i]
                cv2.drawContours(im, [cnt], 0, (0,0,255), 6)
                num = num + 1

            elif (len(contours2) <=2):
                print('Semi-good match. No.:', num)
                cnt = contours[i]
                cv2.drawContours(im, [cnt], 0, (0,255,0), 6)
                num = num + 1

... Listing 2.5: Program code - second part
2.2.3 Limitation

As seen in the previous section, template symbols in a bigger image can be found with a relatively high degree of accuracy with the help of contours. This method is a scale and rotation invariant, which is sometimes very important, and which the method in Chapter 2.1 fails to achieve. Unfortunately, it comes with a few limitations.

The method described in this chapter works only if the searched symbol is not somehow crossed or even "touched" by another symbol or a line. For example, it won’t work if the template image (Figure 2.12) is modified and a rectangle lies directly next to the shape already given (Figure 2.15 - left). In this case, the outer contour will be around both the circle and the rectangle and the shapes cannot be differentiated from one another.

Moreover, if the shape in Figure 2.12 is not closed (an example can be seen in Figure 2.15 - right), it also won’t work, because the outer contour can no longer be differentiated from the inner contour. Hence, there will be only one contour, which does not match the contours in Figure 2.12.

Another disadvantage of this method is that a threshold value for the matching result has to be set. Similarly, as with the method explained in Chapter 2.1, if the threshold value is set too low, there will be no matches found and if set too high, more than the actual amount of matches will be found. However, this method is pretty accurate if the template symbol has not only an outer contour but a child contour as well and is less common to return false positives.
2.3 Cascade Classifiers

This chapter explains a Haar feature-based cascade classifier and how to train it in OpenCV. It is a method for object detection, which was first proposed in Viola et al. (2001). It was originally used for face detection, but it can be used for many types of objects.

A cascade classifier is a machine learning method in which the information computed in a given classifier is used for the next classifier and becomes more complex at each stage. A machine learning is referred to the ability of a computer to learn and improve without being explicitly programmed.

2.3.1 Theory

The method described in this section learns by searching for Haar-like features in an image. The Haar-like features, developed by Viola et al. (2001), can be seen in Figure 2.16. These features differentiate between dark and bright parts of an image by subtracting the sum of the pixels in the white parts from the sum of the pixels in the dark parts. In this way, a computer can find the position between light and dark spots relative to each other. Objects can be distinguished by "remembering" these positions. For example, a face can be recognized because the eyes are darker than the nose or the forehead brighter than the eyes, whereby these features are always in the same position to each other.

![Figure 2.16: Haar-like features](image)

The features in Figure 2.16 were further developed by Lienhart et al. (2002) to use diagonal features which improves the performance of the object detection system. The improved features are categorized into Edge features, Line features, Center-surround features and Special diagonal line feature. The different feature types can be seen in Figure 2.17.

The cascade classifier in OpenCV uses a technique called supervised learning, which means that the training images are labeled. There are two possibilities - images with the searched object in them (positive images) and images without the object (negative images). The images without the object are often called background images. Training with this method requires many positive and negative images. An amount of about ten thousand images is preferable.
2.3. CASCADE CLASSIFIERS

Figure 2.17: Extended Haar-like features with diagonal features

All the possible sizes and locations of Haar-features result in huge amount of features (Opencv, 3.3.0). For example, a window with the size of 20x20 pixels has almost 80000 features. To compute all these features would be an extremely time-consuming task. Therefore, the AdaBoost (Freund et al., 1997) is used, which takes only the most relevant features and significantly reduces the computational time. This algorithm finds the best threshold for every feature to differentiate the object from positive and negative. The cascade classifier then divides the features in different stages, where the first stages have very little features and by increasing the number of stages the number of features also increases. Hence, the accuracy of the trained cascade depends on the amount of features an image has and the number of stages of the training.

OpenCV comes with pretrained Haar cascades for face and eye detection. In this work they are not used, but a new Haar cascade is trained with the help of the "opencv_traincascade" application, which comes with OpenCV. After the training, the cascade is saved in an XML file and can be used in different programs. This application supports local binary pattern (LBP) features in addition to the Haar features described above. The LBP features were first described in Ojala et al. (1994). They are computed by dividing a given window into small patches and each pixel in the patch is compared to its 8 neighbor pixels. The result is an 8-bit pattern, which is used as a descriptor of the patch.

The process of training a Haar cascade in OpenCV is explained in the next section.
2.3. CASCADE CLASSIFIERS

2.3.2 Implementation and results

This section was made possible by the excellent explanation in Kinsley (2016).

The first step to train a Haar cascade in OpenCV is to collect background images. A background or negative image is an image without the object for which the cascade is trained. In this section, the image in Figure 2.18 is used as such an object. It is a part of a larger image, shown in Figure 2.1. Any image that does not contain this symbol can be used as a background image.

![Figure 2.18: Symbol for the training](image)

Ideally, the training would work best if the background images consist of different colors, brightness and scenes. In this case the symbol is searched in different technical drawings, so it is best if the background images are all different technical drawings, without the symbol in Figure 2.18 being displayed. Thousands of background images are required for the cascade to be accurate. Therefore, they are not collected individually, but only three large technical drawings are used, which are then cut into a thousand smaller images and stored in a folder called "Background" (Listing 2.6). For this example, the background images will have a size of 100x100 pixels. As a result, there are 11888 background images, which will be further used for the training.

```python
... h, w = img.shape
num = 1;
for i in range(1, w-200, 60):
 for j in range(1, h-200, 60):
 roi = img[j:j+200, i:i+200]
 resized = cv2.resize(roi, (100, 100))
 name = 'Background/' + str(num) + '.png'
 cv2.imwrite(name, resized)
 num = num+1
...
```

Listing 2.6: cut_image.py
The next step is to create a text file in which the directory path and the name of each background image are stored. For this purpose, all the names of the images from the folder "Background" are read and saved on a different line in a text file with the name "bagr.txt" (Listing 2.7).

```python
for img in os.listdir('Background'):
 text = 'Background/' + img + '
 with open('bagr.txt', 'a') as file:
 file.write(text)
```

Listing 2.7: text_bagr.py

After creating the background images and saving the directory path of each one in a text file, the positive images will be created. For the cascade to be accurate, thousands of positive images are required (in addition to the thousands of negative images), making the process of finding them highly impractical. Therefore, the positive images will be created with the help of the negative images. The OpenCV application "opencv_createsamples" is used for this purpose. This application places the given symbol on each background image in different positions and scales so that positive images are created from the negative ones. The "opencv_createsamples" application can be accessed from the Command Prompt in Windows OS or from the Terminal in Mac OS. In this case, it is executed from the Command Prompt in Windows OS with the following code:

```bash
opencv_createsamples -img symbol.png -bg bagr.txt -info Positive/pos.lst -pngoutput Positive -maxxangle 0.3 -maxyangle 0.3 -maxzangle 0.3 -num 11888
```

Listing 2.8: opencv_createsamples

where:

- "-img symbol.png" denotes the image file of the symbol for which the cascade will be trained. In this image there should only be the symbol and no background. In this case, the image contains just the symbol in Figure 2.18 with a size of 50x50 pixels, making it smaller than the background images.

- "-bg bagr.txt" stands for the text file in which the directory path and the name of every positive image are described. This is required for the program to find the images and access them.
2.3. CASCADE CLASSIFIERS

- "-info Positive/pos.lst" creates a file in the "Positive" folder with the extension ".lst" in which the position of every symbol in the positive image is described (this will be explained further in the coming paragraphs).

- "-pngoutput Positive" defines where the positive images will be stored. In this case, in a folder with the name "Positive".

- "-maxxangle 0.3 -maxyangle 0.3 -maxzangle 0.3" denotes how much the given symbol will be rotated around the x-, y- and z-axis. The angles are in radians. The given symbol is randomly rotated and placed over the negative images.

- "- num 11888" stands for how many positive images are to be created. In this case, there are 11888 background images and the same amount of positive images will be created.

As already explained, the "pos.lst" file contains the position of each symbol in the image. In Listing 2.9, it can be seen precisely how the file is structured. The name of each positive image is written at the first place on every line. The second place indicates how many of the specified symbols can be seen in the image. In this case, there is always only one symbol for a positive image. Next the x- and y-coordinates of the upper left corner of the symbol in the image are displayed. The last two numbers of each line represent the width and height of the symbol that distinguishes them since the symbol is scaled randomly for each positive image.

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>0113_0011_0049_0041_0041.jpg 1 11 49 41 41</td>
</tr>
<tr>
<td>3</td>
<td>0114_0018_0021_0062_0062.jpg 1 18 21 62 62</td>
</tr>
<tr>
<td>4</td>
<td>0115_0008_0015_0024_0024.jpg 1 8 15 24 24</td>
</tr>
<tr>
<td>5</td>
<td>0116_0021_0023_0043_0043.jpg 1 21 23 43 43</td>
</tr>
<tr>
<td>6</td>
<td>...</td>
</tr>
</tbody>
</table>

**Listing 2.9:** Few lines from "pos.lst"

After execution of the program, 11888 positive images are generated. The resulting positive images are the same as the background images, but with the given symbol placed randomly above them. Four of the positive images are shown in Figure 2.19, each one of them corresponding to one of the descriptions in 2.9. As it can be seen, the given symbol was randomly placed over the background images with a different rotation, scale, and position.
2.3. CASCADE CLASSIFIERS

The next step of the training is to create a "positive.vec" file describing the positive images. This type of file is required for the actual training in the next step. For this purpose, the "opencv_createsamples" function is again executed, but this time with the following parameters:

```
opencv_createsamples -info Positive/pos.lst -num 11888 -w 20 -h 20 -vec positives.vec
```

Listing 2.10: opencv_createsamples executed for a second time

where:

- "-info Positive/pos.lst" shows where the file "pos.lst" is stored, which was created and explained in the previous step.

- "-num 11888" stands for how many positive images were created in the previous step.

- "-w 20 -h 20" refers to the size of the output samples in pixels, so that the images will be scaled down to only 20x20 pixels. As already described in this chapter, an image of this size will have around 80000 features, so it is more than enough for an accurate training. If an image with a bigger size is chosen, the time for training is correspondingly longer.

After the required files for the training are ready, the OpenCV application "opencv_traincascade" is executed. It takes the positive and negative images and trains a cascade, which is stored at every stage in a given folder as an XML file. The application is again executed through the Command Prompt with the given parameters:

```
opencv_traincascade -data Data -vec positives.vec -bg bagr.txt -numPos 11500 -numNeg 5750 -numStages 12 -w 20 -h 20
```

Listing 2.11: opencv_traincascade
where:

- "-data Data" indicates where the computed cascade will be stored. In this case that would be in a folder called "Data". It is important to note that after each level of training an XML file is created and at the end a large XML file containing all levels.

- "-vec positives.vec" shows where the file "positives.vec" is stored, in which the information about the positive images is saved.

- "-bg bagr.txt" shows where the text file "bagr.txt" is stored, in which the information about the negative or background images is saved.

- "-numPos 11500 -numNeg 5750" denotes the number of positive and negative images which will be considered by the training. 11500 of the 11888 positive images are used because at every stage the training requires more images and thus a few hundred of the positive images are left as a buffer. Only half of the positive images will be used for the negative images.

- "-numStages 12" stands for how many stages the training will go through before it is considered trained. The training often does not reach all the stages (if given too many), because it is ready before reaching the final stages, but again a buffer is left.

- "-w 20 -h 20" denotes the size of the output samples in pixels as described in the previous step.

The learning process for the given example takes between one and two hours, depending on the machine being used. After the cascade has been trained, it is saved in an XML file. This file can then be opened with the help of the OpenCV function "cv2.CascadeClassifier" (Listing 2.12, line 2). After the cascade has been read, the symbol can be searched in a given image. For this purpose the function "detectMultiScale" is used to search the symbol in different sizes (Listing 2.12, line 4). This function takes as a first parameter the image in which the symbol will be detected. The second parameter is a scale factor which specifies how much the image size is reduced at each scale. Hence, a small scale factor will result in a more accurate result but is computationally more expensive. The third parameter of the function denotes how many neighbors each candidate object should have. The result of the function is an array containing the x and y coordinates and the width and height of each object found. A rectangle is then drawn around every object that has been found (Listing 2.12, lines 6 and 7).
The trained cascade is then tested with the image shown in figure 2.1. As a result, all symbols for which the cascade was trained are correctly recognized with the precise location and size (Figure 2.20).

The method described in this chapter is not only accurate for the given symbol, but also very efficient and therefore very fast after training the cascade. Therefore, it can be used not only for still images but also for videos. Furthermore, after the parameters in the function "detectMultiScale" have been correctly selected, the cascade works for a variety of image sizes and types, without any further adjustments. This method is therefore very useful when searching for the same symbol in many different technical drawings. However, it is not preferable to find many different symbols, as the time for training is relatively long and the techniques described in the previous chapters may be a better choice.
2.3.3 Limitation

The method described in this chapter is very efficient and very accurate under many conditions. However, there are some disadvantages.

First and foremost is that the cascade has to be trained, which is a time-consuming task and many parameters have to be correctly chosen making the process more difficult. In most cases, the training for a symbol, like the one in Figure 2.18, takes no longer than 2 hours because it doesn’t require many features (described in section 2.3) to be accurate. However, if an object like a face or a car is to be found, it would take much longer to train.

The next problem occurs when there are not enough features for a particular object, especially in the early stages of training. A cascade is more accurate if the given object has many and easy to find features. So if a symbol with fewer features is selected, the cascade would have trouble distinguishing it. For example, if a symbol like the one in Figure 2.21 from Chapter 1 is chosen, it won’t work well because the symbol has only thin lines that do not have many features. In order to find features in the given example, the training must go through many stages to find small features, which leads to a very long training time. A cascade with the symbol below was trained for over 8 hours and was still very often unable to correctly find it in a bigger technical drawing.

![Figure 2.21: Bad choice for training](image-url)
Chapter 3

Neural networks with Keras and TensorFlow

As shown in the previous chapter, symbol recognition is a challenging task and each of the explained methods is somehow limited and only works under certain conditions. Therefore, yet another approach for object detection will be tested in this chapter - convolutional neural networks.

Neural networks (NN) have led to huge progress over the last few years in areas such as image, text and speech recognition. A neural network is a form of machine learning, or more precisely deep learning, in which the computer "learns" from given data. For the sake of this work, a convolutional neural network (CNN or ConvNets) will be used, which helps the training process especially with images.

The Keras library is used to build a CNN. Keras is a high-level programming language that makes it possible to create complex programs with fewer lines of code. This helps to build CNNs quickly so that less time is required for coding and more time is left for testing, which is important for building an accurate neural network. However, Keras does not process the NN alone. It is just a front-end layer written in Python that uses either TensorFlow (developed by the Google Brain team) or Theano (developed at the Université de Montréal) libraries to build the neural network. Both libraries can be implemented similarly, but the TensorFlow library will be used because Google offers excellent learning tools, making it easier to start building a neural network.
3.1 The theory behind Convolutional Neural Network

Deep learning is a vast topic, which goes beyond the scope of this work. For this reason, only the essential parts of a CNN will be explained without going into mathematical detail.

Convolutional neural networks are a type of neural networks that are very effective in image recognition. One of the first CNN is called LeNet5 (LeCun, 1998), which has started an era of state-of-the-art artificial intelligence. Unfortunately, the computers did not have the processing power at that time to make significant progress in this area of machine learning, but in recent years computers have become more powerful than ever, and better NNs are trained every day (Culurciello, 2017).

CNNs are so effective for image recognition because they use filters to detect patterns (or features) in an image. For example, a pattern can be a horizontal or a vertical line. Different locations of the image are searched for these features and a value is saved, representing how well every pattern matches the image in a given location (Rohrer, 2017). This is called filtering and will be explained next with the help of Figure 3.1 and Figure 3.2.

Figure 3.1 shows two different features (or filters), both of which have a size of 3x3 pixels. A feature representing a vertical line is displayed on the left, while a feature denoting a horizontal line is shown on the right. The actual filtering is made by sliding the feature over a bigger image (Figure 3.2) and comparing it against a small patch from the large image, whereby the patch always has the same size as the feature.

Each filter pixel is multiplied with the corresponding patch pixel from the image and the results are added up. For example, if the feature which represents a vertical line (Figure 3.1 - left) is compared with the part of the image that is marked by a red rectangle in Figure 3.2, the result would be 3. There are 6 pixels with the same value (-1) and 3 pixels that have different values (-1 and 1). All the pixels with the same values are added together, the rest is subtracted from the sum, resulting in the number 3. This result is then divided by the number of pixels in the feature, which in this case is 9. For the given example above, the final result would be 0.33 (3 divided by 9). If the same feature (Figure 3.1 - left) is compared with the patch, drawn in blue (Figure 3.2), the result will be 1 after it has been divided by the number of pixels. This means that there is a perfect match between the two. The same
result will occur when the filter in Figure 3.1 - right is compared with the green part of the image because they are identical.

![Figure 3.2: Image](image)

A filter is compared for each location in the image and each result value is stored. This results in a map which represents where this feature occurs in the image. By matching the feature for every possible location in the image a convolution is made (Rohrer, 2017). The CNNs use this method and for this reason are called convolutional neural networks. The filtering is made for different features which helps to extract many patterns from the image.

In neural networks, an activation function is required to generate an output from given input in a processing unit (or neuron). Different activation functions exist but in this work only the ReLU (Rectified Linear Unit) function will be explained which will be used later in the example in the next section. ReLU is used to normalize the values in the feature map that was calculated. This simplifies the calculation by setting all negative values to zero. Figure 3.3 shows how a ReLU layer modifies a given feature map. In this case, a feature map of an image with a size of 4x4 pixels.

![Figure 3.3: ReLU](image)

Next, a pooling layer will be explained and more specifically a max pooling layer, which plays an essential role in a CNN. Images usually consist of thousands and often millions of pixels, which makes the training of a CNN extremely computationally expensive. A bigger image results in a bigger feature map (explained above). Therefore, the size of the feature map can
be reduced with max pooling. This is done by taking only the maximum value of a given window and saving it at the correct location in a new smaller feature map.

So, if a max pooling for the feature map in Figure 3.3 - right is made, where a window with a size of 2x2 pixels is chosen, the result will be a feature map like the one in Figure 3.4 - right. The window is moved by 2 pixels every time from left to right and top to bottom. The example depicts how the feature map is smaller while keeping the most important features at the same position relative to one another.

The techniques just explained can be used multiple times in so-called layers, where each layer takes as input the output of the previous layer. The image gets more filtered for every convolution layer and smaller for each pooling layer. The next section will show how such layers can be created with the help of Keras.

After multiple convolutional, ReLU and max-pooling layers, a fully connected layer is attached to the network. In this layer, the features are not represented as a 2-dimensional matrix but instead as a list of features (Figure 3.5). This enables the CNN to understand all the features extracted in the previous layers and the actual learning process happens in this part of the neural network. Again, multiple layers can be stacked one after another, where the input for a given layer is the output from the previous one.

The more layers a neural network has, the deeper it is, which is where the name "deep learning" comes from. Every layer has multiple neurons which are connected to one another between the layers (Figure 3.6). Each of the connections between the nodes in a neural network is weighted (marked with "w" in the example), which means that they are multiplied
by a number, that is between -1 and 1. For every connection in Figure 3.6, the input for a given neuron is the weighted output from the previous neurons. The network "learns" by adjusting the weights until the required output is reached, at least to some level of accuracy. In the example in Figure 3.6, the arrows on the left show an input data that is provided to each of the neurons in the first layer. Such data can be, for example, the features shown in Figure 3.5.

Let us assume that the required output of a CNN would be to classify an image whether it is an image of a horizontal or a vertical line. This is made by adjusting the weights for every connection until the desired result is achieved. In the training process, the neural network tries to minimize the difference between the output it has generated and the real result which has to be reached. If the generated output differentiates from the desired result, the weights are adjusted. When the calculated result is far from the required result, the weights are modified a lot. If the results are close, the weights are adjusted only slightly. This is performed multiple times and every time an error between the real and generated results is calculated. The smaller the error, the better the neural network is trained.

The final output is generated by "voting" for the right image. In the example in Figure 3.6 an image of a horizontal line is to be recognized. The network votes with 0.73 for a horizontal line and 0.27 for a vertical line, where the actual values should be 1 and 0. The error between the generated and the real values can be calculated in different ways. The most common way is the Mean Squared Error (mse), which will be used in the next section. In the example given above, the error with this method is calculated as follows: 

\[(1 - 0.73)^2 + (0 - 0.27)^2 = 0.1458.\]

Such an error is relatively high and the predicted results will be far from the real ones. Therefore, the weights will be adjusted so that next time a higher value for the horizontal line will be given and a lower value for the vertical line respectively. This is called a classification problem and is the most common task for a convolutional neural network. To find the exact location of given symbol, a localization will be made instead of classification, but the principle of learning is the same.
3.2 Implementation and Results

In this section, a convolutional neural network will be created and trained with Keras (using the TensorFlow backend) and Python. It will be a simple neural network which can be trained using almost any modern computer and doesn’t require high-end computer hardware. Therefore, the CNN can be trained relatively fast but some accuracy will be lost.

The first step in making a CNN is to gather a lot of training images. Many thousands of images are required for the neural network to learn properly. Instead of collecting the images one by one, they will be created because most often it is not possible to find thousands of images containing a particular symbol. Similarly, as in Section 2.3.2, the images will be cut from a big technical drawing and over some of the cuts the searched symbol will be placed randomly in different sizes. This step ensures that there are images with and without the symbol so that the CNN can not only find the symbol in an image, but it can also differentiate whether a given image contains the symbol or not. The randomness is made with the functions ”random.uniform” for a float number and ”random.randint” for an integer number (Listing 3.1). Both of these functions are part of the ”random” library. Since a drawing plan is usually only black-and-white, the images will be grayscaled and thresholded (detailed explanation in Section 2.2.2).

```python
... for i in range(1, w_img - 200, 40):
 for j in range(1, h_img - 200, 40):
 roi = img[j:j + 200, i:i + 200]
 img_resized = cv2.resize(roi, (size, size))

 faktor = random.uniform(0.8, 2.2)
b_fakt = round(faktor * w_temp);
h_fakt = round(faktor * h_temp);

temp_resized = cv2.resize(temp, (b_fakt, h_fakt))
x = random.randint(1, size - b_fakt - 1)
y = random.randint(1, size - h_fakt - 1)

symb = random.randint(0,1)
if (symb == 1):
```

The explanation in this section is simplified and does not go into mathematical details. Many sources of information for a detailed description of a convolutional neural network exist. An excellent explanation can be found in Karpathy et al.
3.2. IMPLEMENTATION AND RESULTS

The generated images will be saved in an array with a size of: \((\text{number}\_\text{images}, \text{w}\_\text{size}\_\text{image}, \text{h}\_\text{size}\_\text{image})\), which contains the pixel values of all the images (Listing 3.2, line 2). The location of the symbol in every image is saved in another array with a size of: \((\text{number}\_\text{images}, 4)\), where the number 4 stands for the \(x\)- and \(y\)-coordinates and the width and the height of the symbol in each image. If the variable "symb" equals 1, the symbol is placed over the image and if not, the image won’t contain the symbol ("symb" was randomly generated in Listing 3.1, line 17). The coordinates and size of the symbol are stored in the array if the image contains it, and negative values are stored if no symbol is displayed on the image. All values are divided by the size of the image so that they are only between -1 and 1, which helps the CNN learn easier (Listing 3.2, lines 4-7).

A CNN always expects to become an array of images as an input. The array has to be sized as follows: \((\text{number}\_\text{images}, \text{w}\_\text{size}\_\text{image}, \text{h}\_\text{size}\_\text{image}, \text{number}\_\text{channels})\). Therefore, a new dimension to the existing array with images ("img\_array" in Listing 3.2) will be created which denotes how many channels each image has. This can be made with the function "np.expand_dims" from the NumPy library (Listing 3.3, line 2). The next step is to divide the images into train and test images (Listing 3.3, lines 7-11). The input array contains all images and the output array contains the positions of the symbols in the images. For training 90% of the images will be used and for testing - 10%. The testing images will be used as a validation data in the training process.
3.2. IMPLEMENTATION AND RESULTS

After the input and output data has been created, the convolutional neural network will be designed and trained (Listing 3.4). The designing process is very important for building an accurate CNN. Designing the architecture of a neural network means choosing the number of layers and how these layers are ordered.

In this case (Listing 3.4, lines 3-18) the CNN will have four convolutional layers, four pooling layers and five fully-connected layers (explained in the previous Section 3.1). All the convolution and fully-connected layers have ReLU as an activation function. The input size of the neural network is passed to the first layer of the network (Listing 3.4, Line 3). The input shape is of size \((w_{\text{size_image}}, h_{\text{size_image}}, 1)\), where the number 1 stands for how many channels the image has. In this case, only grayscaled (more specifically thresholded) images are passed to the CNN, which means that the images have only one channel. All the convolutional layers have a filter (or kernel) size of 2x2 pixels. The number of filters varies for each of these layers, where the first one has 20 filters, the second one 40 and so on. The number of filters doubles after every pooling layer. The size of the image gets smaller after every pooling layer, so adding more filters to a smaller image result in approximately the same amount of computations. The first layer has only 20 filters, which is not ideal, but a small amount of filters reduces the training time.

After the feature extraction is ready, a " Flatten" layer is added. This layer transforms the multidimensional features to a list of features (shown in Figure 3.5). In Listing 3.4 on line 13, a "Dropout" layer is added which prevents the neural network from overfitting. "The key idea is to randomly drop units (along with their connections) from the neural network during training. This prevents units from co-adapting too much" (Srivastava, 2014). Five fully-connected layers are then attached to the network, where each layer has a different quantity of nodes (or neurons). The first one has 300, the second 200, the third 100, the fourth 50 and the last one has 25 nodes (Listing 3.4 lines 14-18). The number of nodes was again chosen for better time efficiency by the training process, sacrificing some accuracy.

The network should predict the x- and y-coordinates and the width and the height of the symbol in each image. Therefore, the last layer in the network has four nodes for each one of these values (3.4 line 19). The predicted values should be linear values. Meaning that

```python
output = pos_size

coeff = int(0.1 * cuts)
train_input = input[:coeff]
test_input = input[coeff:]
train_output = output[:coeff]
test_output = output[coeff:]
```

Listing 3.3: Preparing the data for training - part 3
3.2. IMPLEMENTATION AND RESULTS

no ReLU activation function will be used, but instead the last layer is left with the default activation function, which is a linear activation function. It is important to note that all of the predicted values will be between -1 and 1, because the train output data also has values only between -1 and 1.

After the architecture of the convolutional neural network is designed, the training process can begin. First, the neural network is compiled (Listing 3.4, line 22) where for a loss function the mean squared error (mse) is chosen, which was explained in the previous section. A loss function calculates the difference between the generated output and the target output. After testing, the best results were acquired with the "RMSprop"-optimizer and will therefore be used. The actual training is made with the function "model.fit" (Listing 3.4, line 23). The first two parameters in this function are the training images and the expected output for each of the images respectively. They are stored in the arrays "train_input" and "train_output". During the training process the neural network will pass multiple times over the training data, each time becoming more accurate. In the given example, 30 passes across the entire training data will be made. These are called epochs. The test images, which are 10% of all generated images, will be given as a validation data. These images don’t play any role in the training, instead they are used for measuring how well the network is trained after each epoch. On the one hand, if the epochs are too few the neural network won’t be able to make accurate predictions. On the other hand, if too many epochs are made the network will be slower to train and can cause overfitting problems. To make the training data random, the images will be shuffled before being passed to the neural network which can further improve the accuracy. The last parameter in "model.fit" denotes that more detailed information will be printed during the training process. About

After the training process is finished, the neural network is saved to a file which can be used in multiple programs (Listing 3.4, line 25). The file has an extension of "h5", which is a data file saved in the Hierarchical Data Format (HDF) and contains multidimensional arrays.

```python
model = Sequential([
 Convolution2D(20, (2,2), input_shape=(size, size, 1), activation='relu'),
 MaxPooling2D(pool_size=(2, 2)),
 Convolution2D(40, 2, 2, activation='relu'),
 MaxPooling2D(pool_size=(2, 2)),
 Convolution2D(80, 2, 2, activation='relu'),
 MaxPooling2D(pool_size=(2, 2)),
 Convolution2D(160, 2, 2, activation='relu'),
 MaxPooling2D(pool_size=(2, 2)),
 Flatten(),
])
```
3.2. IMPLEMENTATION AND RESULTS

Listing 3.4: Designing and training the CNN

After the training is finished, the CNN has to be tested. The trained CNN can be loaded in a new program and predictions can be made for a given array of images. The input data for the trained network has to have the same size as the input data used for training the network. This includes the number of channels for every image. The predicted results will be between -1 and 1. They should be multiplied by the size of the images before being further used so that the actual location of the symbol in pixels is acquired (Listing 3.5).

Listing 3.5: Using the trained CNN

The generated images for testing are cut from a different image than the one used for training. This ensures that the neural network hasn’t seen these images during training. The accuracy is then measured in two ways. The first measures how accurately the trained network can predict whether the symbol is in the image or not. Further to this will be measured how well the CNN finds the exact position of the symbol in the image by calculating the overlap between the predicted and the real bounding boxes of the symbols, which is called Intersection Over Union (explained in Rieke (2017)). As a result, the trained neural network was able to detect if the searched symbol is on the image with an accuracy of above 95% which is an excellent result. The predicted location of the symbol, on the other hand, strongly depends
on the size of the symbol and the size of the image. The testing CNN was trained with images with a size of 120x120 pixels (for the symbol in Figure 2.18), therefore the test images should have the same size. With this size of the images, the neural network could predict the exact location of the symbol with a 75-85% accuracy, again depending on the size of the symbol. In this case, 100% would be a perfect match for the x- and y-coordinates, as well as the width and the height of the symbol in a given image. Thus 80% is a relatively good match. For testing over ten thousand generated images were used, so the results should represent the real accuracy of the CNN quite good. Figure 3.7 shows some examples of how well the network can predict the location of the symbol (marked by red rectangles), even when it is relatively hard to spot. It is important to note that the network was trained in such a way that a maximum of one symbol should be on every image.

The predictions shown above were made with a simple convolutional neural network and relatively few training images. The accuracy can be increased if a more complex network is used, but this would require a very powerful graphics processing unit (GPU). The size of the images is pretty small but usually a CNN is not trained with images bigger than 250x250 pixels. However, they can be used in bigger images by resizing the bigger image or by cutting it into small parts and using the trained CNN for every part of the image. YOLO (You Only Look Once), for example, is an algorithm for fast object detection, which can be even used in videos with high frame rates (Redmon, 2016).

In the previous Chapter 2.3.3, the method used could not recognize a symbol like the one in Figure 2.21. Meaning that a CNN for the same symbol will be trained. After training, the neural network was tested once more with thousands of images. The accuracy of prediction for this symbol was surprisingly close to the results for the symbol mentioned above. This shows that the CNN was able to recognize the same symbol which wasn’t recognized by the cascade method from the previous chapter. Henceforth, a convolutional neural network can be used in a variety of cases, for which a Haar-cascade can’t be used.

Next, the trained CNNs will be tested on a real data. For testing purposes, an image shown in Figure 3.8 will be used, containing both of the symbols for which a neural network was trained.
To test the CNN, the big image must be cut in small ROIs (regions of interest, explained in the previous chapter) and for each ROI the trained neural network will predict the location of the symbol if one is present. The coordinates of the predictions will be in local coordinates for the given ROI. Therefore, they have to be transformed into global coordinates. The image must be also thresholded because the neural network expects such an image (explained earlier in this section).
The result can be seen in Figure 3.9 where the predictions for each symbol are marked with different colors. The trained neural networks have correctly predicted the position and the size of each symbol, in most cases with a very high accuracy. There are often multiple predictions for a single symbol because the ROIs overlap and thus the same symbol occurs in different ROIs. This problem could be easily eliminated in the majority of situations (simple solution was shown in chapter 2.1.3).

3.3 Limitations

A convolutional neural network can accurately detect symbols as shown above. The used CNN is a very simple and could be trained from almost any modern computer. However, it won’t recognize any symbols in certain situations.

If two symbols are very close to one another, the neural network won’t be able to recognize both because it was trained to predict only one symbol at a time. Meaning that if there is more than one symbol in a single ROI, they won’t be recognized correctly. Nevertheless, a more complex neural network can be trained which would be able to identify multiple symbols at a time. This, however, would require a more powerful GPU and a longer training period. Furthermore, the method with the ROIs described above, isn’t very efficient and is relatively slow, but it was created only for testing the accuracy of the CNNs in real technical drawings and can be further modified.

The biggest challenge to train an accurate convolutional neural network is to have a powerful enough GPU but even then a, complex CNN can require many hours or even days to train. This is a huge drawback, but once correctly designed and trained, a CNN can be very accurate and can be used in a variety of situations.
Chapter 4

Practical implementation with graphical user interface

In the previous chapters, various methods have been proposed for finding symbols in technical drawings. A graphical user interface (GUI) will be created for some of these methods. Programming skills are required to use a program without a GUI, which makes it unpractical in many situations. Therefore, a graphical user interface will be created for easier operation using the Template Matching method and Neural networks, which were already programmed and explained in the previous chapters.

A GUI for the Template Matching method will be made using Windows Presentation Foundation (WPF). WPF is a graphical system developed by Microsoft for building Windows desktop application. Applications with WPF are programmed in the integrated development environment (IDE), called Microsoft Visual Studio, with the programming language C#. To use the OpenCV library in C#, which is normally used in C++ or Python, the "Emgu CV" is used. Emgu CV is a cross-platform wrapper to the OpenCV library that allows OpenCV functions to be called from C#.

As explained in the previous chapter, Keras with TensorFlow backend is used to design, build and test a neural network. Unfortunately, Keras cannot be used in WPF to build a GUI because it can’t be used with C#. The "Tkinter" library in Python is used for this purpose. Tkinter comes included with the standard Python distributions and is the Python standard GUI. Tkinter is not as easy to create a complex GUI as WPF, but it has the advantage of building cross-platform applications, while WPF is only suitable for Windows applications.
4.1 Windows Presentation Foundation and Emgu CV for Template Matching

The first screen when the application starts has a button labeled "Upload image" (Figure 4.1). When the user presses the button, a pop-up window appears and the user can select an image from the File Explorer. The supported file types are "*.jpg" and "*.png".

The selected image is then displayed as a background. The user has two options - either upload a new image or select a symbol for which the program will search (Figure 4.2). To select a symbol, the user must draw a rectangle by clicking with the left mouse button and then moving the mouse to specify the exact size of the rectangle. The position and the size of the rectangle are dynamically displayed in blue. After releasing the left button, the Template Matching method from Chapter 2.1 is used to find the selected symbol. If the chosen symbol is found, it is marked by a red rectangle.

A slider is located at the bottom of the screen (Figure 4.2). This allows the user to adjust the threshold value to minimize the false positives while displaying the true positives, which very often depends on the image and the symbol as explained in Chapter 2.1. The user can upload a new image or select a new rectangle with an icon at any time.

Figure 4.1: WPF GUI - starting screen
4.2 Python and Tkinter for Neural Networks

Unlike the program in the last chapter, this time the user has two options at the starting screen. The first is again to upload an image, but the second is to start the camera if one is available to the system (Figure 4.3).

With the camera the program can find symbols in real time with very good frames per second, which shows how well the neural networks perform (explained in Chapter 3.2). It can even find two different symbols simultaneously (the same two symbols as in Figure 3.9) without delay.

The second option is to find a given symbol in an image. After uploading an image, a new screen is presented to the user, as shown in Figure 4.4. In the upper part of the screen there are two buttons for selecting which symbol to find in the image. By pressing one of the buttons the program automatically finds the locations of the symbol in the image and marks them with blue rectangles.

In this case, the user can only choose between two symbols, but a neural network for another symbol can be trained at any time. The advantage of this method is that the NN can be used very effectively in many situations, whereas the Template Matching method finds symbols only under certain conditions (explained in Chapters 2.1 and 3.2).
Figure 4.3: Tkinter GUI - starting screen

Figure 4.4: Tkinter GUI - finding symbol
Chapter 5

Conclusion

In this work, different approaches for finding symbols in technical drawings have been proposed. An overview of the differences between these methods can be seen in the table below.

<table>
<thead>
<tr>
<th>Method</th>
<th>Advantage</th>
<th>Disadvantage</th>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template matching</td>
<td>Very easy and fast to implement</td>
<td>Not rotation and scale invariant, threshold value</td>
<td>Works only if the symbol always occur with the same size and rotation</td>
</tr>
<tr>
<td>Contours</td>
<td>Easy and fast to implement, rotation and scale invariant</td>
<td>Connected or overlapped symbols, open shapes, threshold value</td>
<td>Not practical for big technical drawings in which the symbols are connected or crossed by lines</td>
</tr>
<tr>
<td>Cascade classifiers</td>
<td>Versatile, works under many conditions</td>
<td>Requires training, threshold values</td>
<td>Works only if the symbol has many features to differentiate it, requires big image data</td>
</tr>
<tr>
<td>Convolutional neural networks</td>
<td>Very versatile, works under almost any conditions</td>
<td>Requires training</td>
<td>Powerful GPU, requires big image data</td>
</tr>
</tbody>
</table>

Figure 5.1: Overview

The first two techniques require no training and can be implemented almost instantly with very promising results under certain conditions. The main disadvantage of the Template matching method is that it is not rotation and scale invariant, meaning that it can only find symbols with the same size and orientation. This problem can be eliminated by rotating and scaling the template image multiple times. However, this is an inefficient and slow solution. Alternatively, the second method is scale and rotation invariant, which is an advantageous factor. Nevertheless, it remains unusable in select situations. For example, the symbol won’t be recognized if it is connected to another symbol or crossed by a line, which is often the case in technical drawings. Another disadvantage of this technique is that it works most optimally
only if the symbol is in a closed shape, as explained in Chapter 2.2.3. In addition, both of these methods require a precisely adjusted threshold value so as to simultaneously keep the false positives low and not lose true positives.

The third method (Cascade classifiers) is rotation and scale invariant and can be used in many situations where the other two techniques fail. However, the Cascade classifiers method requires training, which is a time-consuming task and many variables must be carefully tuned for an accurate training. Although this technique works under many conditions it fails to differentiate a given symbol if it has too few features, as described in Chapter 2.3.3. Furthermore, a threshold value has to be carefully adjusted in order to achieve good results.

The last technique proposed in this work uses convolutional neural networks to find symbols in technical drawings. In addition to being scale and rotation invariant, this method requires no threshold value to be adjusted. The sole disadvantage of this technique is that a neural network (NN) must be trained before being used. The training requires a powerful GPU and a vast quantity of image data, whereas a simple NN can be trained quickly, as described in Chapter 3.2.

The convolutional neural network, which was designed in this work, is a very simple NN and shows promise for optimization. One option would be to add the possibility for the NN to find more than one symbol in a single ROI (explained in Chapter 3.3). Furthermore, the proposed algorithm for implementing the neural network in big images is inefficient and offers room for improvement. Another upgrade would be to make the NN more complex, and thus more accurate, but this would require a significantly more powerful GPU.
Bibliography


Muhammad Muzzamil Luqman, Thierry Brouard and Jean-Yves Ramel. Graphic Symbol Recognition using Graph Based Signature and Bayesian Network Classifier. 10th International Conference on Document Analysis and Recognition (ICDAR) July 26-29, 2009.


Adrian Kaehler and Gary Bradski. Learning OpenCV 3: computer vision in C++ with the OpenCV library. O’Reilly Media, 2016.

OpenCV (3.4.0): Open Source Computer Vision. Template Matching
Accessed on: 2018-01-18

OpenCV (2.4): OpenCV 2.4.13.5 documentation. Template Matching
https://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/template_matching/template_matching.html
Accessed on: 2018-01-18


Hae Yong Kim and Sidnei Alves de Araújo. Grayscale Template-Matching Invariant to Rotation, Scale, Translation, Brightness and Contrast. Mery D., Rueda L. (eds) Advances

OpenCV (3.4.0): Open Source Computer Vision. Contours Hierarchy
https://docs.opencv.org/trunk/d9/d8b/tutorial_py_contours_hierarchy.html
Accessed on: 2018-01-23

OpenCV (3.3.1): Open Source Computer Vision. Contours : Getting Started
https://docs.opencv.org/3.3.1/d4/d73/tutorial_py_contours_begin.html
Accessed on: 2018-01-25


OpenCV (3.3.0): Open Source Computer Vision. Face Detection using Haar Cascades
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html


Harrison Kinsley. Creating your own Haar Cascade OpenCV Python Tutorial.
https://pythonprogramming.net/haar-cascade-object-detection-python-opencv-tutorial/

Eugenio Culurciello. Neural Network Architectures
https://towardsdatascience.com/neural-network-architectures-156c5bad51ba
Accessed on: 2018-02-03.

Brandon Rohrer. How do Convolutional Neural Networks work?

Accessed on: 2018-02-06.


Andrej Karpathy, Justin Johnson. CS231n Convolutional Neural Networks for Visual Recognition.
http://cs231n.github.io/convolutional-networks/
Accessed on: 2018-02-08.


Declaration of Originality

With this statement I declare, that I have independently completed this Bachelor’s thesis. The thoughts taken directly or indirectly from external sources are properly marked as such. This thesis was not previously submitted to another academic institution and has also not yet been published.

München, 14. April 2018

________________________________________
Deian Stoitchkov